root / ase / test / COCu111_2.py @ 4
Historique | Voir | Annoter | Télécharger (1,82 ko)
| 1 | 1 | tkerber | from math import sqrt |
|---|---|---|---|
| 2 | 1 | tkerber | from ase import Atoms, Atom |
| 3 | 1 | tkerber | from ase.constraints import FixAtoms |
| 4 | 1 | tkerber | from ase.optimize import FIRE, QuasiNewton |
| 5 | 1 | tkerber | from ase.neb import SingleCalculatorNEB |
| 6 | 1 | tkerber | from ase.calculators.emt import EMT |
| 7 | 1 | tkerber | |
| 8 | 1 | tkerber | Optimizer=FIRE |
| 9 | 1 | tkerber | Optimizer=QuasiNewton |
| 10 | 1 | tkerber | |
| 11 | 1 | tkerber | # Distance between Cu atoms on a (111) surface:
|
| 12 | 1 | tkerber | a = 3.6
|
| 13 | 1 | tkerber | d = a / sqrt(2)
|
| 14 | 1 | tkerber | fcc111 = Atoms(symbols='Cu',
|
| 15 | 1 | tkerber | cell=[(d, 0, 0), |
| 16 | 1 | tkerber | (d / 2, d * sqrt(3) / 2, 0), |
| 17 | 1 | tkerber | (d / 2, d * sqrt(3) / 6, -a / sqrt(3))], |
| 18 | 1 | tkerber | pbc=True)
|
| 19 | 1 | tkerber | initial = fcc111 * (2, 2, 4) |
| 20 | 1 | tkerber | initial.set_cell([2 * d, d * sqrt(3), 1]) |
| 21 | 1 | tkerber | initial.set_pbc((1, 1, 0)) |
| 22 | 1 | tkerber | initial.set_calculator(EMT()) |
| 23 | 1 | tkerber | Z = initial.get_positions()[:, 2]
|
| 24 | 1 | tkerber | indices = [i for i, z in enumerate(Z) if z < Z.mean()] |
| 25 | 1 | tkerber | constraint = FixAtoms(indices=indices) |
| 26 | 1 | tkerber | initial.set_constraint(constraint) |
| 27 | 1 | tkerber | dyn = Optimizer(initial) |
| 28 | 1 | tkerber | dyn.run(fmax=0.05)
|
| 29 | 1 | tkerber | Z = initial.get_positions()[:, 2]
|
| 30 | 1 | tkerber | print Z[0] - Z[1] |
| 31 | 1 | tkerber | print Z[1] - Z[2] |
| 32 | 1 | tkerber | print Z[2] - Z[3] |
| 33 | 1 | tkerber | |
| 34 | 1 | tkerber | b = 1.2
|
| 35 | 1 | tkerber | h = 1.5
|
| 36 | 1 | tkerber | initial += Atom('C', (d / 2, -b / 2, h)) |
| 37 | 1 | tkerber | initial += Atom('O', (d / 2, +b / 2, h)) |
| 38 | 1 | tkerber | s = initial.copy() |
| 39 | 1 | tkerber | dyn = Optimizer(initial) |
| 40 | 1 | tkerber | dyn.run(fmax=0.05)
|
| 41 | 1 | tkerber | #view(initial)
|
| 42 | 1 | tkerber | |
| 43 | 1 | tkerber | # create final
|
| 44 | 1 | tkerber | final = initial.copy() |
| 45 | 1 | tkerber | final.set_calculator(EMT()) |
| 46 | 1 | tkerber | final.set_constraint(constraint) |
| 47 | 1 | tkerber | final[-2].position = final[-1].position |
| 48 | 1 | tkerber | final[-1].x = d
|
| 49 | 1 | tkerber | final[-1].y = d / sqrt(3) |
| 50 | 1 | tkerber | dyn = Optimizer(final) |
| 51 | 1 | tkerber | dyn.run(fmax=0.1)
|
| 52 | 1 | tkerber | #view(final)
|
| 53 | 1 | tkerber | |
| 54 | 1 | tkerber | # create 2 intermediate step neb
|
| 55 | 1 | tkerber | neb = SingleCalculatorNEB([initial, final]) |
| 56 | 1 | tkerber | neb.refine(2)
|
| 57 | 1 | tkerber | neb.set_calculators(EMT()) |
| 58 | 1 | tkerber | assert(neb.n() == 4) |
| 59 | 1 | tkerber | |
| 60 | 1 | tkerber | dyn = Optimizer(neb, maxstep=0.04, trajectory='mep_2coarse.traj') |
| 61 | 1 | tkerber | dyn.run(fmax=0.1)
|
| 62 | 1 | tkerber | #dyn.run(fmax=39.1)
|
| 63 | 1 | tkerber | |
| 64 | 1 | tkerber | # read from the trajectory
|
| 65 | 1 | tkerber | neb = SingleCalculatorNEB('mep_2coarse.traj@-4:')
|
| 66 | 1 | tkerber | |
| 67 | 1 | tkerber | # refine in the important region
|
| 68 | 1 | tkerber | neb.refine(2, 1, 3) |
| 69 | 1 | tkerber | neb.set_calculators(EMT()) |
| 70 | 1 | tkerber | dyn = Optimizer(neb, maxstep=0.04, trajectory='mep_2fine.traj') |
| 71 | 1 | tkerber | dyn.run(fmax=0.1)
|
| 72 | 1 | tkerber | assert(len(neb.images) == 8) |