root / ase / test / Ag-Cu100.py @ 4
Historique | Voir | Annoter | Télécharger (1,59 ko)
| 1 | 1 | tkerber | from math import sqrt |
|---|---|---|---|
| 2 | 1 | tkerber | from ase import Atom, Atoms |
| 3 | 1 | tkerber | from ase.neb import NEB |
| 4 | 1 | tkerber | from ase.constraints import FixAtoms |
| 5 | 1 | tkerber | from ase.vibrations import Vibrations |
| 6 | 1 | tkerber | from ase.calculators.emt import EMT |
| 7 | 1 | tkerber | from ase.optimize import QuasiNewton |
| 8 | 1 | tkerber | |
| 9 | 1 | tkerber | # Distance between Cu atoms on a (100) surface:
|
| 10 | 1 | tkerber | d = 3.6 / sqrt(2) |
| 11 | 1 | tkerber | initial = Atoms('Cu',
|
| 12 | 1 | tkerber | positions=[(0, 0, 0)], |
| 13 | 1 | tkerber | cell=(d, d, 1.0),
|
| 14 | 1 | tkerber | pbc=(True, True, False)) |
| 15 | 1 | tkerber | initial *= (2, 2, 1) # 2x2 (100) surface-cell |
| 16 | 1 | tkerber | |
| 17 | 1 | tkerber | # Approximate height of Ag atom on Cu(100) surfece:
|
| 18 | 1 | tkerber | h0 = 2.0
|
| 19 | 1 | tkerber | initial += Atom('Ag', (d / 2, d / 2, h0)) |
| 20 | 1 | tkerber | |
| 21 | 1 | tkerber | if 0: |
| 22 | 1 | tkerber | view(initial) |
| 23 | 1 | tkerber | |
| 24 | 1 | tkerber | # Make band:
|
| 25 | 1 | tkerber | images = [initial.copy() for i in range(6)] |
| 26 | 1 | tkerber | neb = NEB(images, climb=True)
|
| 27 | 1 | tkerber | |
| 28 | 1 | tkerber | # Set constraints and calculator:
|
| 29 | 1 | tkerber | constraint = FixAtoms(range(len(initial) - 1)) |
| 30 | 1 | tkerber | for image in images: |
| 31 | 1 | tkerber | image.set_calculator(EMT()) |
| 32 | 1 | tkerber | image.set_constraint(constraint) |
| 33 | 1 | tkerber | |
| 34 | 1 | tkerber | # Displace last image:
|
| 35 | 1 | tkerber | images[-1].positions[-1] += (d, 0, 0) |
| 36 | 1 | tkerber | #images[-1].positions[-1] += (d, d, 0)
|
| 37 | 1 | tkerber | |
| 38 | 1 | tkerber | # Relax height of Ag atom for initial and final states:
|
| 39 | 1 | tkerber | dyn1 = QuasiNewton(images[0])
|
| 40 | 1 | tkerber | dyn1.run(fmax=0.01)
|
| 41 | 1 | tkerber | dyn2 = QuasiNewton(images[-1])
|
| 42 | 1 | tkerber | dyn2.run(fmax=0.01)
|
| 43 | 1 | tkerber | |
| 44 | 1 | tkerber | # Interpolate positions between initial and final states:
|
| 45 | 1 | tkerber | neb.interpolate() |
| 46 | 1 | tkerber | |
| 47 | 1 | tkerber | for image in images: |
| 48 | 1 | tkerber | print image.positions[-1], image.get_potential_energy() |
| 49 | 1 | tkerber | |
| 50 | 1 | tkerber | #dyn = MDMin(neb, dt=0.4)
|
| 51 | 1 | tkerber | #dyn = FIRE(neb, dt=0.4)
|
| 52 | 1 | tkerber | dyn = QuasiNewton(neb, trajectory='mep.traj')
|
| 53 | 1 | tkerber | dyn.run(fmax=0.05)
|
| 54 | 1 | tkerber | |
| 55 | 1 | tkerber | for image in images: |
| 56 | 1 | tkerber | print image.positions[-1], image.get_potential_energy() |
| 57 | 1 | tkerber | |
| 58 | 1 | tkerber | a = images[0]
|
| 59 | 1 | tkerber | vib = Vibrations(a, [4])
|
| 60 | 1 | tkerber | vib.run() |
| 61 | 1 | tkerber | print vib.get_frequencies()
|
| 62 | 1 | tkerber | vib.summary() |
| 63 | 1 | tkerber | print vib.get_mode(-1) |
| 64 | 1 | tkerber | vib.write_mode(-1, nimages=20) |