root / ase / gui / rot_tools.py @ 4
Historique | Voir | Annoter | Télécharger (1,58 ko)
| 1 | 1 | tkerber | # Gives the rotation matrix which rotates theta degrees about
|
|---|---|---|---|
| 2 | 1 | tkerber | # vecU
|
| 3 | 1 | tkerber | |
| 4 | 1 | tkerber | # Generates the rotation matrix that rotate theta degrees about the vecU
|
| 5 | 1 | tkerber | def rotate_about_vec(vecU, theta): |
| 6 | 1 | tkerber | import numpy as np |
| 7 | 1 | tkerber | vecU = np.array(vecU) |
| 8 | 1 | tkerber | vecU = vecU / (sum(vecU ** 2) ** 0.5) |
| 9 | 1 | tkerber | ux, uy, uz = vecU |
| 10 | 1 | tkerber | st = np.sin(theta) |
| 11 | 1 | tkerber | ct = np.cos(theta) |
| 12 | 1 | tkerber | mat = np.array([[ux ** 2 + ct * (1 - ux ** 2), |
| 13 | 1 | tkerber | ux * uy * (1 - ct) - uz * st,
|
| 14 | 1 | tkerber | uz * ux * (1 - ct) + uy * st],
|
| 15 | 1 | tkerber | [ux * uy * (1 - ct) + uz * st,
|
| 16 | 1 | tkerber | uy ** 2 + ct * (1 - uy ** 2), |
| 17 | 1 | tkerber | uy * uz * (1 - ct) - ux * st],
|
| 18 | 1 | tkerber | [uz * ux * (1 - ct) - uy * st,
|
| 19 | 1 | tkerber | uy * uz * (1 - ct) + ux * st,
|
| 20 | 1 | tkerber | uz ** 2 + ct * (1 - uz **2)]]) |
| 21 | 1 | tkerber | return (mat)
|
| 22 | 1 | tkerber | |
| 23 | 1 | tkerber | # Generates the rotation matrix which rotates aVec into intoVec
|
| 24 | 1 | tkerber | def rotate_vec_into_newvec(aVec, intoVec): |
| 25 | 1 | tkerber | def length(v): |
| 26 | 1 | tkerber | return((sum(v ** 2)) ** 0.5) |
| 27 | 1 | tkerber | |
| 28 | 1 | tkerber | import numpy as np |
| 29 | 1 | tkerber | from math import acos |
| 30 | 1 | tkerber | fac = 1.0
|
| 31 | 1 | tkerber | aVec = np.array(aVec) |
| 32 | 1 | tkerber | intoVec = np.array(intoVec) |
| 33 | 1 | tkerber | nor = np.cross(aVec, intoVec) |
| 34 | 1 | tkerber | if length(nor) == 0: |
| 35 | 1 | tkerber | nor = np.array([1, 0, 0]) |
| 36 | 1 | tkerber | nor = nor / length(nor) |
| 37 | 1 | tkerber | theta = acos(np.dot(aVec, intoVec) / (length(aVec) * length(intoVec))) |
| 38 | 1 | tkerber | if np.dot(aVec, intoVec) < 0: |
| 39 | 1 | tkerber | theta = theta + np.pi |
| 40 | 1 | tkerber | fac = -1
|
| 41 | 1 | tkerber | return(fac * rotate_about_vec(nor, theta))
|
| 42 | 1 | tkerber | |
| 43 | 1 | tkerber | # Applies the rotation matrix to the vector and returns the rotated vector
|
| 44 | 1 | tkerber | def rotate_vec (rot_mat, vec): |
| 45 | 1 | tkerber | import numpy as np |
| 46 | 1 | tkerber | rot_vec = np.dot(rot_mat, vec) |
| 47 | 1 | tkerber | |
| 48 | 1 | tkerber | return (rot_vec) |