Statistiques
| Révision :

root / ase / calculators / qmx.py @ 4

Historique | Voir | Annoter | Télécharger (3,9 ko)

1 2 tkerber
""" This is a QM:MM embedded system for ASE
2 2 tkerber

3 2 tkerber
torsten.kerber@ens-lyon.fr
4 2 tkerber
"""
5 2 tkerber
6 2 tkerber
import ase
7 2 tkerber
import ase.atoms
8 2 tkerber
import numpy as np
9 2 tkerber
from general import Calculator
10 2 tkerber
from ase.embed import Embed
11 3 tkerber
from ase.units import Hartree
12 2 tkerber
13 3 tkerber
from copy import deepcopy
14 3 tkerber
15 2 tkerber
import sys, os
16 2 tkerber
17 2 tkerber
class Qmx(Calculator):
18 3 tkerber
    def __init__(self, calculator_high,  calculator_low):
19 2 tkerber
        self._constraints=None
20 3 tkerber
        self.calculator_low_cluster = calculator_low
21 3 tkerber
        self.calculator_low_system = deepcopy(calculator_low)
22 3 tkerber
        self.calculator_high = calculator_high
23 3 tkerber
24 2 tkerber
    def get_energy_subsystem(self, path, calculator, atoms, force_consistent):
25 3 tkerber
        # go to directory and calculate energies
26 3 tkerber
        print "running energy in: ", path
27 2 tkerber
        os.chdir(path)
28 3 tkerber
        atoms.set_calculator(calculator)
29 3 tkerber
        energy = atoms.get_potential_energy()
30 2 tkerber
        os.chdir("..")
31 2 tkerber
        return energy
32 3 tkerber
33 2 tkerber
    def get_forces_subsystem(self, path, calculator, atoms):
34 3 tkerber
        # go to directory and calculate forces
35 3 tkerber
        print "running forces in: ", path
36 2 tkerber
        os.chdir(path)
37 3 tkerber
        atoms.set_calculator(calculator)
38 3 tkerber
        forces = atoms.get_forces()
39 2 tkerber
        os.chdir("..")
40 2 tkerber
        return forces
41 3 tkerber
42 2 tkerber
    def get_potential_energy(self, embed, force_consistent=False):
43 3 tkerber
        # perform energy calculations
44 3 tkerber
        e_sys_lo = self.get_energy_subsystem("system.low-level", self.calculator_low_system, embed.get_system(), force_consistent)
45 3 tkerber
        e_cl_lo  = self.get_energy_subsystem("cluster.low-level", self.calculator_low_cluster, embed.get_cluster(), force_consistent)
46 2 tkerber
        e_cl_hi  = self.get_energy_subsystem("cluster.high-level", self.calculator_high, embed.get_cluster(), force_consistent)
47 2 tkerber
        # calculate energies
48 2 tkerber
        energy = e_sys_lo - e_cl_lo + e_cl_hi
49 3 tkerber
        # print energies
50 2 tkerber
        print "%20s=%15s - %15s + %15s" %("E(C:S)", "E(S-MM)", "E(C-MM)", "E(C-QM)")
51 2 tkerber
        print "%20f=%15f - %15f + %15f" %(energy, e_sys_lo, e_cl_lo, e_cl_hi)
52 3 tkerber
        # set energies and return
53 2 tkerber
        if force_consistent:
54 2 tkerber
            self.energy_free = energy
55 2 tkerber
            return self.energy_free
56 2 tkerber
        else:
57 2 tkerber
            self.energy_zero = energy
58 2 tkerber
            return self.energy_zero
59 2 tkerber
60 2 tkerber
    def get_forces(self, embed):
61 2 tkerber
        atom_map_sys_cl = embed.atom_map_sys_cl
62 2 tkerber
        # get forces for the three systems
63 3 tkerber
        f_sys_lo = self.get_forces_subsystem("system.low-level", self.calculator_low_system, embed.get_system())
64 3 tkerber
        f_cl_lo  = self.get_forces_subsystem("cluster.low-level", self.calculator_low_cluster, embed.get_cluster())
65 2 tkerber
        f_cl_hi  = self.get_forces_subsystem("cluster.high-level", self.calculator_high, embed.get_cluster())
66 2 tkerber
        # forces correction for the atoms
67 2 tkerber
        f_cl = f_cl_hi - f_cl_lo
68 3 tkerber
        # number of atoms
69 2 tkerber
        nat_sys = len(embed)
70 2 tkerber
        # lo-sys + (hi-lo)
71 2 tkerber
        for iat_sys in xrange(nat_sys):
72 2 tkerber
            iat_cl = atom_map_sys_cl[iat_sys]
73 2 tkerber
            if iat_cl > -1:
74 2 tkerber
                f_sys_lo[iat_sys] += f_cl[iat_cl]
75 3 tkerber
76 2 tkerber
        # correct gradients
77 2 tkerber
        # Reference: Eichler, Koelmel, Sauer, J. of Comput. Chem., 18(4). 1997, 463-477.
78 3 tkerber
        for cell_L, iat_cl_sys, iat_sys, r, iat_link in embed.linkatoms:
79 2 tkerber
            # calculate the bond distance (r_bond) at the border
80 3 tkerber
            xyz = embed[iat_sys].get_position() - embed[iat_cl_sys].get_position() + cell_L
81 2 tkerber
82 2 tkerber
            # calculate the bond lenght and the factor f
83 2 tkerber
            rbond = np.sqrt(np.dot(xyz, xyz))
84 2 tkerber
            f = r / rbond
85 2 tkerber
            #normalize xyz
86 2 tkerber
            xyz /= rbond
87 2 tkerber
            # receive the gradients for the link atom
88 3 tkerber
            fL = f_cl[iat_link]
89 3 tkerber
            # dot product fL, xyz
90 3 tkerber
            fs = np.dot(xyz, fL)
91 3 tkerber
            # apply corrections for each direction
92 2 tkerber
            for idir in xrange(3):
93 2 tkerber
                # correct the atom in the system
94 3 tkerber
                f_sys_lo[iat_sys][idir] += f*fL[idir] - f*fs*xyz[idir]
95 2 tkerber
                # correct the atom in the cluster
96 3 tkerber
                f_sys_lo[iat_cl_sys][idir] += (1-f)*fL[idir] + f*fs*xyz[idir]
97 2 tkerber
        return f_sys_lo