root / ase / transport / stm.py @ 3
Historique | Voir | Annoter | Télécharger (7,29 ko)
1 |
import numpy as np |
---|---|
2 |
from ase.transport.tools import dagger |
3 |
from ase.transport.selfenergy import LeadSelfEnergy |
4 |
from ase.transport.greenfunction import GreenFunction |
5 |
import time |
6 |
from gpaw.mpi import world |
7 |
|
8 |
|
9 |
class STM: |
10 |
def __init__(self, h1, s1, h2, s2 ,h10, s10, h20, s20, eta1, eta2, w=0.5, pdos=[], logfile = None): |
11 |
"""XXX
|
12 |
|
13 |
1. Tip
|
14 |
2. Surface
|
15 |
|
16 |
h1: ndarray
|
17 |
Hamiltonian and overlap matrix for the isolated tip
|
18 |
calculation. Note, h1 should contain (at least) one
|
19 |
principal layer.
|
20 |
|
21 |
h2: ndarray
|
22 |
Same as h1 but for the surface.
|
23 |
|
24 |
h10: ndarray
|
25 |
periodic part of the tip. must include two and only
|
26 |
two principal layers.
|
27 |
|
28 |
h20: ndarray
|
29 |
same as h10, but for the surface
|
30 |
|
31 |
The s* are the corresponding overlap matrices. eta1, and eta
|
32 |
2 are (finite) infinitesimals. """
|
33 |
|
34 |
self.pl1 = len(h10) // 2 #principal layer size for the tip |
35 |
self.pl2 = len(h20) // 2 #principal layer size for the surface |
36 |
self.h1 = h1
|
37 |
self.s1 = s1
|
38 |
self.h2 = h2
|
39 |
self.s2 = s2
|
40 |
self.h10 = h10
|
41 |
self.s10 = s10
|
42 |
self.h20 = h20
|
43 |
self.s20 = s20
|
44 |
self.eta1 = eta1
|
45 |
self.eta2 = eta2
|
46 |
self.w = w #asymmetry of the applied bias (0.5=>symmetric) |
47 |
self.pdos = []
|
48 |
self.log = logfile
|
49 |
|
50 |
def initialize(self, energies, bias=0): |
51 |
"""
|
52 |
energies: list of energies
|
53 |
for which the transmission function should be evaluated.
|
54 |
bias.
|
55 |
Will precalculate the surface greenfunctions of the tip and
|
56 |
surface.
|
57 |
"""
|
58 |
self.bias = bias
|
59 |
self.energies = energies
|
60 |
nenergies = len(energies)
|
61 |
pl1, pl2 = self.pl1, self.pl2 |
62 |
nbf1, nbf2 = len(self.h1), len(self.h2) |
63 |
|
64 |
#periodic part of the tip
|
65 |
hs1_dii = self.h10[:pl1, :pl1], self.s10[:pl1, :pl1] |
66 |
hs1_dij = self.h10[:pl1, pl1:2*pl1], self.s10[:pl1, pl1:2*pl1] |
67 |
#coupling betwen per. and non. per part of the tip
|
68 |
h1_im = np.zeros((pl1, nbf1), complex)
|
69 |
s1_im = np.zeros((pl1, nbf1), complex)
|
70 |
h1_im[:pl1, :pl1], s1_im[:pl1, :pl1] = hs1_dij |
71 |
hs1_dim = [h1_im, s1_im] |
72 |
|
73 |
#periodic part the surface
|
74 |
hs2_dii = self.h20[:pl2, :pl2], self.s20[:pl2, :pl2] |
75 |
hs2_dij = self.h20[pl2:2*pl2, :pl2], self.s20[pl2:2*pl2, :pl2] |
76 |
#coupling betwen per. and non. per part of the surface
|
77 |
h2_im = np.zeros((pl2, nbf2), complex)
|
78 |
s2_im = np.zeros((pl2, nbf2), complex)
|
79 |
h2_im[-pl2:, -pl2:], s2_im[-pl2:, -pl2:] = hs2_dij |
80 |
hs2_dim = [h2_im, s2_im] |
81 |
|
82 |
#tip and surface greenfunction
|
83 |
self.selfenergy1 = LeadSelfEnergy(hs1_dii, hs1_dij, hs1_dim, self.eta1) |
84 |
self.selfenergy2 = LeadSelfEnergy(hs2_dii, hs2_dij, hs2_dim, self.eta2) |
85 |
self.greenfunction1 = GreenFunction(self.h1-self.bias*self.w*self.s1, self.s1, |
86 |
[self.selfenergy1], self.eta1) |
87 |
self.greenfunction2 = GreenFunction(self.h2-self.bias*(self.w-1)*self.s2, self.s2, |
88 |
[self.selfenergy2], self.eta2) |
89 |
|
90 |
#Shift the bands due to the bias.
|
91 |
bias_shift1 = -bias * self.w
|
92 |
bias_shift2 = -bias * (self.w - 1) |
93 |
self.selfenergy1.set_bias(bias_shift1)
|
94 |
self.selfenergy2.set_bias(bias_shift2)
|
95 |
|
96 |
#tip and surface greenfunction matrices.
|
97 |
nbf1_small = nbf1 #XXX Change this for efficiency in the future
|
98 |
nbf2_small = nbf2 #XXX -||-
|
99 |
coupling_list1 = range(nbf1_small)# XXX -||- |
100 |
coupling_list2 = range(nbf2_small)# XXX -||- |
101 |
self.gft1_emm = np.zeros((nenergies, nbf1_small, nbf1_small), complex) |
102 |
self.gft2_emm = np.zeros((nenergies, nbf2_small, nbf2_small), complex) |
103 |
|
104 |
for e, energy in enumerate(self.energies): |
105 |
if self.log != None: # and world.rank == 0: |
106 |
T = time.localtime() |
107 |
self.log.write(' %d:%02d:%02d, ' % (T[3], T[4], T[5]) + |
108 |
'%d, %d, %02f\n' % (world.rank, e, energy))
|
109 |
gft1_mm = self.greenfunction1.retarded(energy)[coupling_list1]
|
110 |
gft1_mm = np.take(gft1_mm, coupling_list1, axis=1)
|
111 |
|
112 |
gft2_mm = self.greenfunction2.retarded(energy)[coupling_list2]
|
113 |
gft2_mm = np.take(gft2_mm, coupling_list2, axis=1)
|
114 |
|
115 |
self.gft1_emm[e] = gft1_mm
|
116 |
self.gft2_emm[e] = gft2_mm
|
117 |
|
118 |
if self.log != None and world.rank == 0: |
119 |
self.log.flush()
|
120 |
|
121 |
def get_transmission(self, v_12, v_11_2=None, v_22_1=None): |
122 |
"""XXX
|
123 |
|
124 |
v_12:
|
125 |
coupling between tip and surface
|
126 |
v_11_2:
|
127 |
correction to "on-site" tip elements due to the
|
128 |
surface (eq.16). Is only included to first order.
|
129 |
v_22_1:
|
130 |
corretion to "on-site" surface elements due to he
|
131 |
tip (eq.17). Is only included to first order.
|
132 |
"""
|
133 |
|
134 |
dim0 = v_12.shape[0]
|
135 |
dim1 = v_12.shape[1]
|
136 |
|
137 |
nenergies = len(self.energies) |
138 |
T_e = np.empty(nenergies,float)
|
139 |
v_21 = dagger(v_12) |
140 |
for e, energy in enumerate(self.energies): |
141 |
gft1 = self.gft1_emm[e]
|
142 |
if v_11_2!=None: |
143 |
gf1 = np.dot(v_11_2, np.dot(gft1, v_11_2)) |
144 |
gf1 += gft1 #eq. 16
|
145 |
else:
|
146 |
gf1 = gft1 |
147 |
|
148 |
gft2 = self.gft2_emm[e]
|
149 |
if v_22_1!=None: |
150 |
gf2 = np.dot(v_22_1,np.dot(gft2, v_22_1)) |
151 |
gf2 += gft2 #eq. 17
|
152 |
else:
|
153 |
gf2 = gft2 |
154 |
|
155 |
a1 = (gf1 - dagger(gf1)) |
156 |
a2 = (gf2 - dagger(gf2)) |
157 |
self.v_12 = v_12
|
158 |
self.a2 = a2
|
159 |
self.v_21 = v_21
|
160 |
self.a1 = a1
|
161 |
v12_a2 = np.dot(v_12, a2[:dim1]) |
162 |
v21_a1 = np.dot(v_21, a1[-dim0:]) |
163 |
self.v12_a2 = v12_a2
|
164 |
self.v21_a1 = v21_a1
|
165 |
T = -np.trace(np.dot(v12_a2[:,:dim1], v21_a1[:,-dim0:])) #eq. 11
|
166 |
T_e[e] = T |
167 |
self.T_e = T_e
|
168 |
return T_e
|
169 |
|
170 |
|
171 |
def get_current(self, bias, v_12, v_11_2=None, v_22_1=None): |
172 |
"""Very simple function to calculate the current.
|
173 |
|
174 |
Asummes zero temperature.
|
175 |
|
176 |
bias: type? XXX
|
177 |
bias voltage (V)
|
178 |
|
179 |
v_12: XXX
|
180 |
coupling between tip and surface.
|
181 |
|
182 |
v_11_2:
|
183 |
correction to onsite elements of the tip
|
184 |
due to the potential of the surface.
|
185 |
v_22_1:
|
186 |
correction to onsite elements of the surface
|
187 |
due to the potential of the tip.
|
188 |
"""
|
189 |
energies = self.energies
|
190 |
T_e = self.get_transmission(v_12, v_11_2, v_22_1)
|
191 |
bias_window = -np.array([bias * self.w, bias * (self.w - 1)]) |
192 |
bias_window.sort() |
193 |
self.bias_window = bias_window
|
194 |
#print 'bias window', np.around(bias_window,3)
|
195 |
#print 'Shift of tip lead do to the bias:', self.selfenergy1.bias
|
196 |
#print 'Shift of surface lead do to the bias:', self.selfenergy2.bias
|
197 |
i1 = sum(energies < bias_window[0]) |
198 |
i2 = sum(energies < bias_window[1]) |
199 |
step = 1
|
200 |
if i2 < i1:
|
201 |
step = -1
|
202 |
|
203 |
return np.sign(bias)*np.trapz(x=energies[i1:i2:step], y=T_e[i1:i2:step])
|
204 |
|
205 |
|
206 |
|
207 |
|
208 |
|
209 |
|