root / ase / gui / view.py @ 3
Historique | Voir | Annoter | Télécharger (22,5 ko)
1 |
#!/usr/bin/env python
|
---|---|
2 |
|
3 |
# Emacs: treat this as -*- python -*-
|
4 |
|
5 |
import os |
6 |
import gtk |
7 |
import tempfile |
8 |
from math import cos, sin, sqrt |
9 |
|
10 |
import numpy as np |
11 |
|
12 |
from ase.data.colors import jmol_colors |
13 |
from ase.gui.repeat import Repeat |
14 |
from ase.gui.rotate import Rotate |
15 |
from ase.utils import rotate |
16 |
|
17 |
|
18 |
class View: |
19 |
def __init__(self, vbox, rotations): |
20 |
self.colors = [None] * (len(jmol_colors) + 1) |
21 |
self.nselected = 0 |
22 |
self.light_green_markings = 0 |
23 |
self.axes = rotate(rotations)
|
24 |
# this is a hack, in order to be able to toggle menu actions off/on
|
25 |
# without getting into an infinte loop
|
26 |
self.menu_change = 0 |
27 |
|
28 |
self.atoms_to_rotate = None |
29 |
|
30 |
self.drawing_area = gtk.DrawingArea()
|
31 |
self.drawing_area.set_size_request(450, 450) |
32 |
self.drawing_area.connect('button_press_event', self.press) |
33 |
self.drawing_area.connect('button_release_event', self.release) |
34 |
self.drawing_area.connect('motion-notify-event', self.move) |
35 |
# Signals used to handle backing pixmap:
|
36 |
self.drawing_area.connect('expose_event', self.expose_event) |
37 |
self.drawing_area.connect('configure_event', self.configure_event) |
38 |
self.drawing_area.set_events(gtk.gdk.BUTTON_PRESS_MASK |
|
39 |
gtk.gdk.BUTTON_RELEASE_MASK | |
40 |
gtk.gdk.BUTTON_MOTION_MASK | |
41 |
gtk.gdk.POINTER_MOTION_HINT_MASK) |
42 |
vbox.pack_start(self.drawing_area)
|
43 |
self.drawing_area.show()
|
44 |
self.configured = False |
45 |
self.frame = None |
46 |
|
47 |
def set_coordinates(self, frame=None, focus=None): |
48 |
if frame is None: |
49 |
frame = self.frame
|
50 |
self.make_box()
|
51 |
self.bind(frame)
|
52 |
n = self.images.natoms
|
53 |
self.X = np.empty((n + len(self.B1) + len(self.bonds), 3)) |
54 |
#self.X[n:] = np.dot(self.B1, self.images.A[frame])
|
55 |
#self.B = np.dot(self.B2, self.images.A[frame])
|
56 |
self.set_frame(frame, focus=focus, init=True) |
57 |
|
58 |
def set_frame(self, frame=None, focus=False, init=False): |
59 |
if frame is None: |
60 |
frame = self.frame
|
61 |
|
62 |
n = self.images.natoms
|
63 |
|
64 |
if init or frame != self.frame: |
65 |
A = self.images.A
|
66 |
nc = len(self.B1) |
67 |
nb = len(self.bonds) |
68 |
|
69 |
if init or (A[frame] != A[self.frame]).any(): |
70 |
self.X[n:n + nc] = np.dot(self.B1, A[frame]) |
71 |
self.B = np.empty((nc + nb, 3)) |
72 |
self.B[:nc] = np.dot(self.B2, A[frame]) |
73 |
|
74 |
if nb > 0: |
75 |
P = self.images.P[frame]
|
76 |
Af = self.images.repeat[:, np.newaxis] * A[frame]
|
77 |
a = P[self.bonds[:, 0]] |
78 |
b = P[self.bonds[:, 1]] + np.dot(self.bonds[:, 2:], Af) - a |
79 |
d = (b**2).sum(1)**0.5 |
80 |
r = 0.65 * self.images.r |
81 |
x0 = (r[self.bonds[:, 0]] / d).reshape((-1, 1)) |
82 |
x1 = (r[self.bonds[:, 1]] / d).reshape((-1, 1)) |
83 |
self.X[n + nc:] = a + b * x0
|
84 |
b *= 1.0 - x0 - x1
|
85 |
b[self.bonds[:, 2:].any(1)] *= 0.5 |
86 |
self.B[nc:] = self.X[n + nc:] + b |
87 |
|
88 |
filenames = self.images.filenames
|
89 |
filename = filenames[frame] |
90 |
if self.frame is None or filename != filenames[self.frame]: |
91 |
if filename is None: |
92 |
filename = 'ase.gui'
|
93 |
self.window.set_title(filename)
|
94 |
|
95 |
self.frame = frame
|
96 |
|
97 |
self.X[:n] = self.images.P[frame] |
98 |
self.R = self.X[:n] |
99 |
if focus:
|
100 |
self.focus()
|
101 |
else:
|
102 |
self.draw()
|
103 |
|
104 |
def set_colors(self): |
105 |
new = self.drawing_area.window.new_gc
|
106 |
alloc = self.colormap.alloc_color
|
107 |
for z in self.images.Z: |
108 |
if self.colors[z] is None: |
109 |
c, p, k = jmol_colors[z] |
110 |
self.colors[z] = new(alloc(int(65535 * c), |
111 |
int(65535 * p), |
112 |
int(65535 * k))) |
113 |
|
114 |
def plot_cell(self): |
115 |
V = self.images.A[0] |
116 |
R1 = [] |
117 |
R2 = [] |
118 |
for c in range(3): |
119 |
v = V[c] |
120 |
d = sqrt(np.dot(v, v)) |
121 |
n = max(2, int(d / 0.3)) |
122 |
h = v / (2 * n - 1) |
123 |
R = np.arange(n)[:, None] * (2 * h) |
124 |
for i, j in [(0, 0), (0, 1), (1, 0), (1, 1)]: |
125 |
R1.append(R + i * V[(c + 1) % 3] + j * V[(c + 2) % 3]) |
126 |
R2.append(R1[-1] + h)
|
127 |
return np.concatenate(R1), np.concatenate(R2)
|
128 |
|
129 |
def make_box(self): |
130 |
if not self.ui.get_widget('/MenuBar/ViewMenu/ShowUnitCell' |
131 |
).get_active(): |
132 |
self.B1 = self.B2 = np.zeros((0, 3)) |
133 |
return
|
134 |
|
135 |
V = self.images.A[0] |
136 |
nn = [] |
137 |
for c in range(3): |
138 |
v = V[c] |
139 |
d = sqrt(np.dot(v, v)) |
140 |
n = max(2, int(d / 0.3)) |
141 |
nn.append(n) |
142 |
self.B1 = np.zeros((2, 2, sum(nn), 3)) |
143 |
self.B2 = np.zeros((2, 2, sum(nn), 3)) |
144 |
n1 = 0
|
145 |
for c, n in enumerate(nn): |
146 |
n2 = n1 + n |
147 |
h = 1.0 / (2 * n - 1) |
148 |
R = np.arange(n) * (2 * h)
|
149 |
|
150 |
for i, j in [(0, 0), (0, 1), (1, 0), (1, 1)]: |
151 |
self.B1[i, j, n1:n2, c] = R
|
152 |
self.B1[i, j, n1:n2, (c + 1) % 3] = i |
153 |
self.B1[i, j, n1:n2, (c + 2) % 3] = j |
154 |
self.B2[:, :, n1:n2] = self.B1[:, :, n1:n2] |
155 |
self.B2[:, :, n1:n2, c] += h
|
156 |
n1 = n2 |
157 |
self.B1.shape = (-1, 3) |
158 |
self.B2.shape = (-1, 3) |
159 |
|
160 |
def bind(self, frame): |
161 |
if not self.ui.get_widget('/MenuBar/ViewMenu/ShowBonds' |
162 |
).get_active(): |
163 |
self.bonds = np.empty((0, 5), int) |
164 |
return
|
165 |
|
166 |
from ase.atoms import Atoms |
167 |
from ase.calculators.neighborlist import NeighborList |
168 |
nl = NeighborList(self.images.r * 1.5, skin=0, self_interaction=False) |
169 |
nl.update(Atoms(positions=self.images.P[frame],
|
170 |
cell=(self.images.repeat[:, np.newaxis] *
|
171 |
self.images.A[frame]),
|
172 |
pbc=self.images.pbc))
|
173 |
nb = nl.nneighbors + nl.npbcneighbors |
174 |
self.bonds = np.empty((nb, 5), int) |
175 |
if nb == 0: |
176 |
return
|
177 |
|
178 |
n1 = 0
|
179 |
for a in range(self.images.natoms): |
180 |
indices, offsets = nl.get_neighbors(a) |
181 |
n2 = n1 + len(indices)
|
182 |
self.bonds[n1:n2, 0] = a |
183 |
self.bonds[n1:n2, 1] = indices |
184 |
self.bonds[n1:n2, 2:] = offsets |
185 |
n1 = n2 |
186 |
|
187 |
i = self.bonds[:n2, 2:].any(1) |
188 |
self.bonds[n2:, 0] = self.bonds[i, 1] |
189 |
self.bonds[n2:, 1] = self.bonds[i, 0] |
190 |
self.bonds[n2:, 2:] = -self.bonds[i, 2:] |
191 |
|
192 |
def toggle_show_unit_cell(self, action): |
193 |
self.set_coordinates()
|
194 |
|
195 |
def reset_tools_modes(self): |
196 |
dummy = self.menu_change
|
197 |
self.menu_change = 1 |
198 |
self.atoms_to_rotate = None |
199 |
for c_mode in ['Rotate', 'Orient', 'Move']: |
200 |
self.ui.get_widget('/MenuBar/ToolsMenu/%sAtoms' % c_mode).set_active(False) |
201 |
self.light_green_markings = 0 |
202 |
self.menu_change = 0 |
203 |
self.draw()
|
204 |
|
205 |
|
206 |
def toggle_mode(self, mode): |
207 |
self.menu_change = 1 |
208 |
i_sum = 0
|
209 |
for c_mode in ['Rotate', 'Orient', 'Move']: |
210 |
i_sum += self.ui.get_widget('/MenuBar/ToolsMenu/%sAtoms' % c_mode).get_active() |
211 |
if i_sum == 0 or (i_sum == 1 and sum(self.images.selected) == 0): |
212 |
self.reset_tools_modes()
|
213 |
return()
|
214 |
|
215 |
if i_sum == 2: |
216 |
try:
|
217 |
self.images.selected = self.atoms_to_rotate_0.copy() |
218 |
except:
|
219 |
self.atoms_to_rotate_0 = self.images.selected.copy() |
220 |
if i_sum == 1: |
221 |
self.atoms_to_rotate_0 = self.images.selected.copy() |
222 |
|
223 |
for c_mode in ['Rotate', 'Orient', 'Move']: |
224 |
if c_mode != mode:
|
225 |
self.ui.get_widget('/MenuBar/ToolsMenu/%sAtoms' % c_mode).set_active(False) |
226 |
|
227 |
if self.ui.get_widget('/MenuBar/ToolsMenu/%sAtoms' % mode).get_active(): |
228 |
self.atoms_to_rotate_0 = self.images.selected.copy() |
229 |
for i in range(len(self.images.selected)): |
230 |
self.images.selected[i] = False |
231 |
self.light_green_markings = 1 |
232 |
else:
|
233 |
try:
|
234 |
atr = self.atoms_to_rotate_0
|
235 |
for i in range(len(self.images.selected)): |
236 |
self.images.selected[i] = atr[i]
|
237 |
except:
|
238 |
pass
|
239 |
|
240 |
self.menu_change = 0 |
241 |
self.draw()
|
242 |
|
243 |
def toggle_move_mode(self, action): |
244 |
"""
|
245 |
Toggles the move mode, where the selected atoms can be moved with the arrow
|
246 |
keys and pg up/dn. If the shift key is pressed, the movement will be reduced.
|
247 |
|
248 |
The movement will be relative to the current rotation of the coordinate system.
|
249 |
|
250 |
The implementation of the move mode is found in the gui.scroll
|
251 |
"""
|
252 |
if not (self.menu_change): |
253 |
self.toggle_mode('Move') |
254 |
|
255 |
def toggle_rotate_mode(self, action): |
256 |
"""
|
257 |
Toggles the rotate mode, where the selected atoms can be rotated with the arrow keys
|
258 |
and pg up/dn. If the shift key is pressed, the rotation angle will be reduced.
|
259 |
|
260 |
The atoms to be rotated will be marked with light green - and the COM of the selected
|
261 |
atoms will be used as the COM of the rotation. This can be changed while rotating the
|
262 |
selected atoms.
|
263 |
|
264 |
If only two atoms are seleceted, and the number of atoms to be rotated is different from
|
265 |
two, the selected atoms will define the axis of rotation.
|
266 |
|
267 |
The implementation of the rotate mode is found in the gui.scroll
|
268 |
"""
|
269 |
if not (self.menu_change): |
270 |
self.toggle_mode('Rotate') |
271 |
|
272 |
def toggle_orient_mode(self, action): |
273 |
"""
|
274 |
Toggle the orientation mode - the orientation of the atoms will be changed
|
275 |
according to the arrow keys selected.
|
276 |
|
277 |
If nothing is selected, standard directions are x, y and z
|
278 |
if two atoms are selected, the standard directions are along their displacement vector
|
279 |
if three atoms are selected, the orientation is changed according to the normal of these
|
280 |
three vectors.
|
281 |
"""
|
282 |
if not (self.menu_change): |
283 |
self.toggle_mode('Orient') |
284 |
self.orient_normal = np.array([1.0, 0.0, 0.0]) |
285 |
sel_pos = [] |
286 |
for i, j in enumerate(self.atoms_to_rotate_0): |
287 |
if j:
|
288 |
sel_pos.append(self.R[i])
|
289 |
if len(sel_pos) == 2: |
290 |
self.orient_normal = sel_pos[0] - sel_pos[1] |
291 |
if len(sel_pos) == 3: |
292 |
v1 = sel_pos[1] - sel_pos[0] |
293 |
v2 = sel_pos[1] - sel_pos[2] |
294 |
self.orient_normal = np.cross(v1, v2)
|
295 |
self.orient_normal /= sum(self.orient_normal ** 2) ** 0.5 |
296 |
|
297 |
def toggle_show_axes(self, action): |
298 |
self.draw()
|
299 |
|
300 |
def toggle_show_bonds(self, action): |
301 |
self.set_coordinates()
|
302 |
|
303 |
def repeat_window(self, menuitem): |
304 |
self.reset_tools_modes()
|
305 |
Repeat(self)
|
306 |
|
307 |
def rotate_window(self, menuitem): |
308 |
Rotate(self)
|
309 |
|
310 |
def focus(self, x=None): |
311 |
if (self.images.natoms == 0 and not |
312 |
self.ui.get_widget('/MenuBar/ViewMenu/ShowUnitCell').get_active()): |
313 |
self.scale = 1.0 |
314 |
self.center = np.zeros(3) |
315 |
self.draw()
|
316 |
return
|
317 |
|
318 |
P = np.dot(self.X, self.axes) |
319 |
n = self.images.natoms
|
320 |
P[:n] -= self.images.r[:, None] |
321 |
P1 = P.min(0)
|
322 |
P[:n] += 2 * self.images.r[:, None] |
323 |
P2 = P.max(0)
|
324 |
self.center = np.dot(self.axes, (P1 + P2) / 2) |
325 |
S = 1.3 * (P2 - P1)
|
326 |
if S[0] * self.height < S[1] * self.width: |
327 |
self.scale = self.height / S[1] |
328 |
else:
|
329 |
self.scale = self.width / S[0] |
330 |
self.draw()
|
331 |
|
332 |
def draw(self, status=True): |
333 |
self.pixmap.draw_rectangle(self.white_gc, True, 0, 0, |
334 |
self.width, self.height) |
335 |
axes = self.scale * self.axes * (1, -1, 1) |
336 |
offset = (np.dot(self.center, axes) -
|
337 |
(0.5 * self.width, 0.5 * self.height, 0)) |
338 |
X = np.dot(self.X, axes) - offset
|
339 |
n = self.images.natoms
|
340 |
self.indices = X[:, 2].argsort() |
341 |
P = self.P = X[:n, :2] |
342 |
X1 = X[n:, :2].round().astype(int) |
343 |
X2 = (np.dot(self.B, axes) - offset).round().astype(int) |
344 |
|
345 |
if self.ui.get_widget('/MenuBar/ViewMenu/ShowBonds').get_active(): |
346 |
r = self.images.r * (0.65 * self.scale) |
347 |
else:
|
348 |
r = self.images.r * self.scale |
349 |
A = (P - r[:, None]).round().astype(int) |
350 |
d = (2 * r).round().astype(int) |
351 |
selected_gc = self.selected_gc
|
352 |
|
353 |
colors = self.colors
|
354 |
Z = self.images.Z
|
355 |
arc = self.pixmap.draw_arc
|
356 |
line = self.pixmap.draw_line
|
357 |
black_gc = self.black_gc
|
358 |
dynamic = self.images.dynamic
|
359 |
selected = self.images.selected
|
360 |
visible = self.images.visible
|
361 |
for a in self.indices: |
362 |
if a < n:
|
363 |
ra = d[a] |
364 |
if visible[a]:
|
365 |
arc(colors[Z[a]], True, A[a, 0], A[a, 1], ra, ra, 0, 23040) |
366 |
if self.light_green_markings and self.atoms_to_rotate_0[a]: |
367 |
arc(self.green, False, A[a, 0] + 2, A[a, 1] + 2, |
368 |
ra - 4, ra - 4, 0, 23040) |
369 |
|
370 |
if not dynamic[a]: |
371 |
R1 = int(0.14644 * ra) |
372 |
R2 = int(0.85355 * ra) |
373 |
line(black_gc, |
374 |
A[a, 0] + R1, A[a, 1] + R1, |
375 |
A[a, 0] + R2, A[a, 1] + R2) |
376 |
line(black_gc, |
377 |
A[a, 0] + R2, A[a, 1] + R1, |
378 |
A[a, 0] + R1, A[a, 1] + R2) |
379 |
if selected[a]:
|
380 |
arc(selected_gc, False, A[a, 0], A[a, 1], ra, ra, 0, 23040) |
381 |
elif visible[a]:
|
382 |
arc(black_gc, False, A[a, 0], A[a, 1], ra, ra, 0, 23040) |
383 |
else:
|
384 |
a -= n |
385 |
line(black_gc, X1[a, 0], X1[a, 1], X2[a, 0], X2[a, 1]) |
386 |
|
387 |
if self.ui.get_widget('/MenuBar/ViewMenu/ShowAxes').get_active(): |
388 |
self.draw_axes()
|
389 |
|
390 |
if self.images.nimages > 1: |
391 |
self.draw_frame_number()
|
392 |
|
393 |
self.drawing_area.window.draw_drawable(self.white_gc, self.pixmap, |
394 |
0, 0, 0, 0, |
395 |
self.width, self.height) |
396 |
|
397 |
if status:
|
398 |
self.status()
|
399 |
|
400 |
def draw_axes(self): |
401 |
L = np.zeros((10, 2, 3)) |
402 |
L[:3, 1] = self.axes * 15 |
403 |
L[3:5] = self.axes[0] * 20 |
404 |
L[5:7] = self.axes[1] * 20 |
405 |
L[7:] = self.axes[2] * 20 |
406 |
L[3:, :, :2] += (((-4, -5), (4, 5)), ((-4, 5), ( 4, -5)), |
407 |
((-4, 5), (0, 0)), ((-4, -5), ( 4, 5)), |
408 |
((-4, 5), (4, 5)), (( 4, 5), (-4, -5)), |
409 |
((-4, -5), (4, -5))) |
410 |
L = L.round().astype(int)
|
411 |
L[:, :, 0] += 20 |
412 |
L[:, :, 1] = self.height - 20 - L[:, :, 1] |
413 |
line = self.pixmap.draw_line
|
414 |
colors = ([self.black_gc] * 3 + |
415 |
[self.red] * 2 + [self.green] * 2 + [self.blue] * 3) |
416 |
for i in L[:, 1, 2].argsort(): |
417 |
(a, b), (c, d) = L[i, :, :2]
|
418 |
line(colors[i], a, b, c, d) |
419 |
|
420 |
digits = np.array(((1, 1, 1, 1, 1, 1, 0), |
421 |
(0, 1, 1, 0, 0, 0, 0), |
422 |
(1, 0, 1, 1, 0, 1, 1), |
423 |
(1, 1, 1, 1, 0, 0, 1), |
424 |
(0, 1, 1, 0, 1, 0, 1), |
425 |
(1, 1, 0, 1, 1, 0, 1), |
426 |
(1, 1, 0, 1, 1, 1, 1), |
427 |
(0, 1, 1, 1, 0, 0, 0), |
428 |
(1, 1, 1, 1, 1, 1, 1), |
429 |
(0, 1, 1, 1, 1, 0, 1)), bool) |
430 |
|
431 |
bars = np.array(((0, 2, 1, 2), |
432 |
(1, 2, 1, 1), |
433 |
(1, 1, 1, 0), |
434 |
(1, 0, 0, 0), |
435 |
(0, 0, 0, 1), |
436 |
(0, 1, 0, 2), |
437 |
(0, 1, 1, 1))) * 5 |
438 |
|
439 |
def draw_frame_number(self): |
440 |
n = str(self.frame) |
441 |
x = self.width - 3 - 8 * len(n) |
442 |
y = self.height - 27 |
443 |
color = self.black_gc
|
444 |
line = self.pixmap.draw_line
|
445 |
for c in n: |
446 |
bars = View.bars[View.digits[int(c)]]
|
447 |
for a, b, c, d in bars: |
448 |
line(color, a + x, b + y, c + x, d + y) |
449 |
x += 8
|
450 |
|
451 |
def release(self, drawing_area, event): |
452 |
if event.button != 1: |
453 |
return
|
454 |
|
455 |
selected = self.images.selected
|
456 |
selected_ordered = self.images.selected_ordered
|
457 |
|
458 |
if event.time < self.t0 + 200: # 200 ms |
459 |
d = self.P - self.xy |
460 |
hit = np.less((d**2).sum(1), (self.scale * self.images.r)**2) |
461 |
for a in self.indices[::-1]: |
462 |
if a < self.images.natoms and hit[a]: |
463 |
if event.state & gtk.gdk.CONTROL_MASK:
|
464 |
selected[a] = not selected[a]
|
465 |
if selected[a]:
|
466 |
selected_ordered += [a] |
467 |
elif len(selected_ordered) > 0: |
468 |
if selected_ordered[-1] == a: |
469 |
selected_ordered = selected_ordered[:-1]
|
470 |
else:
|
471 |
selected_ordered = [] |
472 |
else:
|
473 |
selected[:] = False
|
474 |
selected[a] = True
|
475 |
selected_ordered = [a] |
476 |
break
|
477 |
else:
|
478 |
selected[:] = False
|
479 |
selected_ordered = [] |
480 |
self.draw()
|
481 |
else:
|
482 |
A = (event.x, event.y) |
483 |
C1 = np.minimum(A, self.xy)
|
484 |
C2 = np.maximum(A, self.xy)
|
485 |
hit = np.logical_and(self.P > C1, self.P < C2) |
486 |
indices = np.compress(hit.prod(1), np.arange(len(hit))) |
487 |
if not (event.state & gtk.gdk.CONTROL_MASK): |
488 |
selected[:] = False
|
489 |
selected[indices] = True
|
490 |
if len(indices) == 1 and indices[0] not in self.images.selected_ordered: |
491 |
selected_ordered += [indices[0]]
|
492 |
elif len(indices) > 1: |
493 |
selected_ordered = [] |
494 |
self.draw()
|
495 |
|
496 |
indices = np.arange(self.images.natoms)[self.images.selected] |
497 |
if len(indices) != len(selected_ordered): |
498 |
selected_ordered = [] |
499 |
self.images.selected_ordered = selected_ordered
|
500 |
|
501 |
def press(self, drawing_area, event): |
502 |
self.button = event.button
|
503 |
self.xy = (event.x, event.y)
|
504 |
self.t0 = event.time
|
505 |
self.axes0 = self.axes |
506 |
self.center0 = self.center |
507 |
|
508 |
def move(self, drawing_area, event): |
509 |
|
510 |
x, y, state = event.window.get_pointer() |
511 |
x0, y0 = self.xy
|
512 |
if self.button == 1: |
513 |
window = self.drawing_area.window
|
514 |
window.draw_drawable(self.white_gc, self.pixmap, |
515 |
0, 0, 0, 0, |
516 |
self.width, self.height) |
517 |
x0 = int(round(x0)) |
518 |
y0 = int(round(y0)) |
519 |
window.draw_rectangle(self.selected_gc, False, |
520 |
min(x, x0), min(y, y0), |
521 |
abs(x - x0), abs(y - y0)) |
522 |
return
|
523 |
if self.button == 2: |
524 |
return
|
525 |
if state & gtk.gdk.SHIFT_MASK:
|
526 |
self.center = (self.center0 - |
527 |
np.dot(self.axes, (x - x0, y0 - y, 0)) / self.scale) |
528 |
else:
|
529 |
# Snap mode: the a-b angle and t should multipla of 15 degrees ???
|
530 |
a = x - x0 |
531 |
b = y0 - y |
532 |
t = sqrt(a * a + b * b) |
533 |
if t > 0: |
534 |
a /= t |
535 |
b /= t |
536 |
else:
|
537 |
a = 1.0
|
538 |
b = 0.0
|
539 |
c = cos(0.01 * t)
|
540 |
s = -sin(0.01 * t)
|
541 |
rotation = np.array([(c * a * a + b * b, (c - 1) * b * a, s * a),
|
542 |
((c - 1) * a * b, c * b * b + a * a, s * b),
|
543 |
(-s * a, -s * b, c)]) |
544 |
self.axes = np.dot(self.axes0, rotation) |
545 |
if self.images.natoms > 0: |
546 |
com = self.X[:self.images.natoms].mean(0) |
547 |
else:
|
548 |
com = self.images.A[self.frame].mean(0) |
549 |
self.center = com - np.dot(com - self.center0, |
550 |
np.dot(self.axes0, self.axes.T)) |
551 |
self.draw(status=False) |
552 |
|
553 |
# Create a new backing pixmap of the appropriate size
|
554 |
def configure_event(self, drawing_area, event): |
555 |
if self.configured: |
556 |
w = self.width
|
557 |
h = self.height
|
558 |
else:
|
559 |
self.colormap = self.drawing_area.get_colormap() |
560 |
self.black_gc = self.drawing_area.get_style().black_gc |
561 |
self.white_gc = self.drawing_area.get_style().white_gc |
562 |
self.red = self.drawing_area.window.new_gc( |
563 |
self.colormap.alloc_color(62345, 0, 0), line_width=2) |
564 |
self.green = self.drawing_area.window.new_gc( |
565 |
self.colormap.alloc_color(0, 54456, 0), line_width=2) |
566 |
self.blue = self.drawing_area.window.new_gc( |
567 |
self.colormap.alloc_color(0, 0, 54456), line_width=2) |
568 |
self.selected_gc = self.drawing_area.window.new_gc( |
569 |
self.colormap.alloc_color(0, 16456, 0), |
570 |
line_width=3)
|
571 |
|
572 |
x, y, self.width, self.height = drawing_area.get_allocation() |
573 |
self.pixmap = gtk.gdk.Pixmap(drawing_area.window,
|
574 |
self.width, self.height) |
575 |
if self.configured: |
576 |
self.scale *= sqrt(1.0 * self.width * self.height / (w * h)) |
577 |
self.draw()
|
578 |
self.configured = True |
579 |
|
580 |
# Redraw the screen from the backing pixmap
|
581 |
def expose_event(self, drawing_area, event): |
582 |
x , y, width, height = event.area |
583 |
gc = self.white_gc
|
584 |
drawing_area.window.draw_drawable(gc, self.pixmap,
|
585 |
x, y, x, y, width, height) |
586 |
|
587 |
def external_viewer(self, action): |
588 |
name = action.get_name() |
589 |
command = {'Avogadro' : 'avogadro', |
590 |
'XMakeMol': 'xmakemol -f', |
591 |
'RasMol':'rasmol -xyz', |
592 |
'VMD': 'vmd'}[name] |
593 |
fd, filename = tempfile.mkstemp('.xyz', 'ase.gui-') |
594 |
os.close(fd) |
595 |
self.images.write(filename)
|
596 |
os.system('(%s %s &); (sleep 60; rm %s) &' %
|
597 |
(command, filename, filename)) |