root / ase / visualize / vtk / grid.py @ 3
Historique | Voir | Annoter | Télécharger (10,83 ko)
1 | 1 | tkerber | |
---|---|---|---|
2 | 1 | tkerber | import numpy as np |
3 | 1 | tkerber | |
4 | 1 | tkerber | from vtk import vtkPointData, vtkDataArray, vtkUnstructuredGrid, vtkPoints, \ |
5 | 1 | tkerber | vtkIdList, vtkStructuredPoints |
6 | 1 | tkerber | from ase.visualize.vtk.cell import vtkUnitCellModule |
7 | 1 | tkerber | from ase.visualize.vtk.data import vtkDataArrayFromNumPyBuffer, \ |
8 | 1 | tkerber | vtkDoubleArrayFromNumPyArray, \
|
9 | 1 | tkerber | vtkDoubleArrayFromNumPyMultiArray
|
10 | 1 | tkerber | |
11 | 1 | tkerber | # -------------------------------------------------------------------
|
12 | 1 | tkerber | |
13 | 1 | tkerber | class vtkBaseGrid: |
14 | 1 | tkerber | def __init__(self, npoints, cell): |
15 | 1 | tkerber | self.npoints = npoints
|
16 | 1 | tkerber | |
17 | 1 | tkerber | # Make sure cell argument is correct type
|
18 | 1 | tkerber | assert isinstance(cell, vtkUnitCellModule) |
19 | 1 | tkerber | self.cell = cell
|
20 | 1 | tkerber | |
21 | 1 | tkerber | self.vtk_pointdata = None |
22 | 1 | tkerber | |
23 | 1 | tkerber | def set_point_data(self, vtk_pointdata): |
24 | 1 | tkerber | if self.vtk_pointdata is not None: |
25 | 1 | tkerber | raise RuntimeError('VTK point data already present.') |
26 | 1 | tkerber | |
27 | 1 | tkerber | assert isinstance(vtk_pointdata, vtkPointData) |
28 | 1 | tkerber | self.vtk_pointdata = vtk_pointdata
|
29 | 1 | tkerber | #self.vtk_pointdata.SetCopyScalars(False)
|
30 | 1 | tkerber | #self.vtk_pointdata.SetCopyVectors(False)
|
31 | 1 | tkerber | #self.vtk_pointdata.SetCopyNormals(False)
|
32 | 1 | tkerber | |
33 | 1 | tkerber | def get_point_data(self): |
34 | 1 | tkerber | if self.vtk_pointdata is None: |
35 | 1 | tkerber | raise RuntimeError('VTK point data missing.') |
36 | 1 | tkerber | |
37 | 1 | tkerber | return self.vtk_pointdata |
38 | 1 | tkerber | |
39 | 1 | tkerber | def get_number_of_points(self): |
40 | 1 | tkerber | return self.npoints |
41 | 1 | tkerber | |
42 | 1 | tkerber | def add_scalar_data_array(self, data, name=None, active=True): |
43 | 1 | tkerber | |
44 | 1 | tkerber | # Are we converting from NumPy buffer to VTK array?
|
45 | 1 | tkerber | if isinstance(data, vtkDataArray): |
46 | 1 | tkerber | vtk_sda = data |
47 | 1 | tkerber | elif isinstance(data, vtkDataArrayFromNumPyBuffer): |
48 | 1 | tkerber | vtk_sda = data.get_output() |
49 | 1 | tkerber | else:
|
50 | 1 | tkerber | raise ValueError('Data is not a valid scalar data array.') |
51 | 1 | tkerber | |
52 | 1 | tkerber | del data
|
53 | 1 | tkerber | |
54 | 1 | tkerber | assert vtk_sda.GetNumberOfComponents() == 1 |
55 | 1 | tkerber | assert vtk_sda.GetNumberOfTuples() == self.npoints |
56 | 1 | tkerber | |
57 | 1 | tkerber | if name is not None: |
58 | 1 | tkerber | vtk_sda.SetName(name) |
59 | 1 | tkerber | |
60 | 1 | tkerber | # Add VTK array to VTK point data
|
61 | 1 | tkerber | self.vtk_pointdata.AddArray(vtk_sda)
|
62 | 1 | tkerber | |
63 | 1 | tkerber | if active:
|
64 | 1 | tkerber | self.vtk_pointdata.SetActiveScalars(name)
|
65 | 1 | tkerber | |
66 | 1 | tkerber | return vtk_sda
|
67 | 1 | tkerber | |
68 | 1 | tkerber | def add_vector_data_array(self, data, name=None, active=True): |
69 | 1 | tkerber | |
70 | 1 | tkerber | # Are we converting from NumPy buffer to VTK array?
|
71 | 1 | tkerber | if isinstance(data, vtkDataArray): |
72 | 1 | tkerber | vtk_vda = data |
73 | 1 | tkerber | elif isinstance(data, vtkDataArrayFromNumPyBuffer): |
74 | 1 | tkerber | vtk_vda = data.get_output() |
75 | 1 | tkerber | else:
|
76 | 1 | tkerber | raise ValueError('Data is not a valid vector data array.') |
77 | 1 | tkerber | |
78 | 1 | tkerber | del data
|
79 | 1 | tkerber | |
80 | 1 | tkerber | assert vtk_vda.GetNumberOfComponents() == 3 |
81 | 1 | tkerber | assert vtk_vda.GetNumberOfTuples() == self.npoints |
82 | 1 | tkerber | |
83 | 1 | tkerber | if name is not None: |
84 | 1 | tkerber | vtk_vda.SetName(name) |
85 | 1 | tkerber | |
86 | 1 | tkerber | # Add VTK array to VTK point data
|
87 | 1 | tkerber | self.vtk_pointdata.AddArray(vtk_vda)
|
88 | 1 | tkerber | |
89 | 1 | tkerber | if active:
|
90 | 1 | tkerber | self.vtk_pointdata.SetActiveVectors(name)
|
91 | 1 | tkerber | |
92 | 1 | tkerber | return vtk_vda
|
93 | 1 | tkerber | |
94 | 1 | tkerber | # -------------------------------------------------------------------
|
95 | 1 | tkerber | |
96 | 1 | tkerber | class vtkAtomicPositions(vtkBaseGrid): |
97 | 1 | tkerber | """Provides an interface for adding ``Atoms``-centered data to VTK
|
98 | 1 | tkerber | modules. Atomic positions, e.g. obtained using atoms.get_positions(),
|
99 | 1 | tkerber | constitute an unstructured grid in VTK, to which scalar and vector
|
100 | 1 | tkerber | can be added as point data sets.
|
101 | 1 | tkerber |
|
102 | 1 | tkerber | Just like ``Atoms``, instances of ``vtkAtomicPositions`` can be divided
|
103 | 1 | tkerber | into subsets, which makes it easy to select atoms and add properties.
|
104 | 1 | tkerber |
|
105 | 1 | tkerber | Example:
|
106 | 1 | tkerber |
|
107 | 1 | tkerber | >>> cell = vtkUnitCellModule(atoms)
|
108 | 1 | tkerber | >>> apos = vtkAtomicPositions(atoms.get_positions(), cell)
|
109 | 1 | tkerber | >>> apos.add_scalar_property(atoms.get_charges(), 'charges')
|
110 | 1 | tkerber | >>> apos.add_vector_property(atoms.get_forces(), 'forces')
|
111 | 1 | tkerber |
|
112 | 1 | tkerber | """
|
113 | 1 | tkerber | def __init__(self, pos, cell): |
114 | 1 | tkerber | """Construct basic VTK-representation of a set of atomic positions.
|
115 | 1 | tkerber |
|
116 | 1 | tkerber | pos: NumPy array of dtype float and shape ``(n,3)``
|
117 | 1 | tkerber | Cartesian positions of the atoms.
|
118 | 1 | tkerber | cell: Instance of vtkUnitCellModule of subclass thereof
|
119 | 1 | tkerber | Holds information equivalent to that of atoms.get_cell().
|
120 | 1 | tkerber |
|
121 | 1 | tkerber | """
|
122 | 1 | tkerber | # Make sure position argument is a valid array
|
123 | 1 | tkerber | if not isinstance(pos, np.ndarray): |
124 | 1 | tkerber | pos = np.array(pos) |
125 | 1 | tkerber | |
126 | 1 | tkerber | assert pos.dtype == float and pos.shape[1:] == (3,) |
127 | 1 | tkerber | |
128 | 1 | tkerber | vtkBaseGrid.__init__(self, len(pos), cell) |
129 | 1 | tkerber | |
130 | 1 | tkerber | # Convert positions to VTK array
|
131 | 1 | tkerber | npy2da = vtkDoubleArrayFromNumPyArray(pos) |
132 | 1 | tkerber | vtk_pda = npy2da.get_output() |
133 | 1 | tkerber | del npy2da
|
134 | 1 | tkerber | |
135 | 1 | tkerber | # Transfer atomic positions to VTK points
|
136 | 1 | tkerber | self.vtk_pts = vtkPoints()
|
137 | 1 | tkerber | self.vtk_pts.SetData(vtk_pda)
|
138 | 1 | tkerber | |
139 | 1 | tkerber | # Create a VTK unstructured grid of these points
|
140 | 1 | tkerber | self.vtk_ugd = vtkUnstructuredGrid()
|
141 | 1 | tkerber | self.vtk_ugd.SetWholeBoundingBox(self.cell.get_bounding_box()) |
142 | 1 | tkerber | self.vtk_ugd.SetPoints(self.vtk_pts) |
143 | 1 | tkerber | |
144 | 1 | tkerber | # Extract the VTK point data set
|
145 | 1 | tkerber | self.set_point_data(self.vtk_ugd.GetPointData()) |
146 | 1 | tkerber | |
147 | 1 | tkerber | def get_points(self, subset=None): |
148 | 1 | tkerber | """Return (subset of) vtkPoints containing atomic positions.
|
149 | 1 | tkerber |
|
150 | 1 | tkerber | subset=None: list of int
|
151 | 1 | tkerber | A list of indices into the atomic positions; ignored if None.
|
152 | 1 | tkerber |
|
153 | 1 | tkerber | """
|
154 | 1 | tkerber | if subset is None: |
155 | 1 | tkerber | return self.vtk_pts |
156 | 1 | tkerber | |
157 | 1 | tkerber | # Create a list of indices from the subset
|
158 | 1 | tkerber | vtk_il = vtkIdList() |
159 | 1 | tkerber | for i in subset: |
160 | 1 | tkerber | vtk_il.InsertNextId(i) |
161 | 1 | tkerber | |
162 | 1 | tkerber | # Allocate VTK points for subset
|
163 | 1 | tkerber | vtk_subpts = vtkPoints() |
164 | 1 | tkerber | vtk_subpts.SetDataType(self.vtk_pts.GetDataType())
|
165 | 1 | tkerber | vtk_subpts.SetNumberOfPoints(vtk_il.GetNumberOfIds()) |
166 | 1 | tkerber | |
167 | 1 | tkerber | # Transfer subset of VTK points
|
168 | 1 | tkerber | self.vtk_pts.GetPoints(vtk_il, vtk_subpts)
|
169 | 1 | tkerber | |
170 | 1 | tkerber | return vtk_subpts
|
171 | 1 | tkerber | |
172 | 1 | tkerber | def get_unstructured_grid(self, subset=None): |
173 | 1 | tkerber | """Return (subset of) an unstructured grid of the atomic positions.
|
174 | 1 | tkerber |
|
175 | 1 | tkerber | subset=None: list of int
|
176 | 1 | tkerber | A list of indices into the atomic positions; ignored if None.
|
177 | 1 | tkerber |
|
178 | 1 | tkerber | """
|
179 | 1 | tkerber | if subset is None: |
180 | 1 | tkerber | return self.vtk_ugd |
181 | 1 | tkerber | |
182 | 1 | tkerber | # Get subset of VTK points
|
183 | 1 | tkerber | vtk_subpts = self.get_points(subset)
|
184 | 1 | tkerber | |
185 | 1 | tkerber | # Create a VTK unstructured grid of these points
|
186 | 1 | tkerber | vtk_subugd = vtkUnstructuredGrid() |
187 | 1 | tkerber | vtk_subugd.SetWholeBoundingBox(self.cell.get_bounding_box())
|
188 | 1 | tkerber | vtk_subugd.SetPoints(vtk_subpts) |
189 | 1 | tkerber | |
190 | 1 | tkerber | return vtk_subugd
|
191 | 1 | tkerber | |
192 | 1 | tkerber | def add_scalar_property(self, data, name=None, active=True): |
193 | 1 | tkerber | """Add VTK-representation of scalar data at the atomic positions.
|
194 | 1 | tkerber |
|
195 | 1 | tkerber | data: NumPy array of dtype float and shape ``(n,)``
|
196 | 1 | tkerber | Scalar values corresponding to the atomic positions.
|
197 | 1 | tkerber | name=None: str
|
198 | 1 | tkerber | Unique identifier for the scalar data.
|
199 | 1 | tkerber | active=True: bool
|
200 | 1 | tkerber | Flag indicating whether to use as active scalar data.
|
201 | 1 | tkerber |
|
202 | 1 | tkerber | """
|
203 | 1 | tkerber | # Make sure data argument is a valid array
|
204 | 1 | tkerber | if not isinstance(data, np.ndarray): |
205 | 1 | tkerber | data = np.array(data) |
206 | 1 | tkerber | |
207 | 1 | tkerber | assert data.dtype == float and data.shape == (self.npoints,) |
208 | 1 | tkerber | |
209 | 1 | tkerber | # Convert scalar properties to VTK array
|
210 | 1 | tkerber | npa2da = vtkDoubleArrayFromNumPyArray(data) |
211 | 1 | tkerber | return vtkBaseGrid.add_scalar_data_array(self, npa2da, name, active) |
212 | 1 | tkerber | |
213 | 1 | tkerber | def add_vector_property(self, data, name=None, active=True): |
214 | 1 | tkerber | """Add VTK-representation of vector data at the atomic positions.
|
215 | 1 | tkerber |
|
216 | 1 | tkerber | data: NumPy array of dtype float and shape ``(n,3)``
|
217 | 1 | tkerber | Vector components corresponding to the atomic positions.
|
218 | 1 | tkerber | name=None: str
|
219 | 1 | tkerber | Unique identifier for the vector data.
|
220 | 1 | tkerber | active=True: bool
|
221 | 1 | tkerber | Flag indicating whether to use as active vector data.
|
222 | 1 | tkerber |
|
223 | 1 | tkerber | """
|
224 | 1 | tkerber | # Make sure data argument is a valid array
|
225 | 1 | tkerber | if not isinstance(data, np.ndarray): |
226 | 1 | tkerber | data = np.array(data) |
227 | 1 | tkerber | |
228 | 1 | tkerber | assert data.dtype == float and data.shape == (self.npoints,3,) |
229 | 1 | tkerber | |
230 | 1 | tkerber | # Convert vector properties to VTK array
|
231 | 1 | tkerber | npa2da = vtkDoubleArrayFromNumPyArray(data) |
232 | 1 | tkerber | return vtkBaseGrid.add_vector_data_array(self, npa2da, name, active) |
233 | 1 | tkerber | |
234 | 1 | tkerber | # -------------------------------------------------------------------
|
235 | 1 | tkerber | |
236 | 1 | tkerber | class vtkVolumeGrid(vtkBaseGrid): |
237 | 1 | tkerber | def __init__(self, elements, cell, origin=None): |
238 | 1 | tkerber | |
239 | 1 | tkerber | # Make sure element argument is a valid array
|
240 | 1 | tkerber | if not isinstance(elements, np.ndarray): |
241 | 1 | tkerber | elements = np.array(elements) |
242 | 1 | tkerber | |
243 | 1 | tkerber | assert elements.dtype == int and elements.shape == (3,) |
244 | 1 | tkerber | self.elements = elements
|
245 | 1 | tkerber | |
246 | 1 | tkerber | vtkBaseGrid.__init__(self, np.prod(self.elements), cell) |
247 | 1 | tkerber | |
248 | 1 | tkerber | # Create a VTK grid of structured points
|
249 | 1 | tkerber | self.vtk_spts = vtkStructuredPoints()
|
250 | 1 | tkerber | self.vtk_spts.SetWholeBoundingBox(self.cell.get_bounding_box()) |
251 | 1 | tkerber | self.vtk_spts.SetDimensions(self.elements) |
252 | 1 | tkerber | self.vtk_spts.SetSpacing(self.get_grid_spacing()) |
253 | 1 | tkerber | |
254 | 1 | tkerber | if origin is not None: |
255 | 1 | tkerber | self.vtk_spts.SetOrigin(origin)
|
256 | 1 | tkerber | |
257 | 1 | tkerber | # Extract the VTK point data set
|
258 | 1 | tkerber | self.set_point_data(self.vtk_spts.GetPointData()) |
259 | 1 | tkerber | |
260 | 1 | tkerber | def get_grid_spacing(self): |
261 | 1 | tkerber | # Periodic boundary conditions leave out one boundary along an axis
|
262 | 1 | tkerber | # Zero/fixed boundary conditions leave out both boundaries of an axis
|
263 | 1 | tkerber | return self.cell.get_size()/(self.elements+1.0-self.cell.get_pbc()) |
264 | 1 | tkerber | |
265 | 1 | tkerber | def get_relaxation_factor(self): |
266 | 1 | tkerber | # The relaxation factor is a floating point value between zero and one.
|
267 | 1 | tkerber | # It expresses the need for smoothening (relaxation) e.g. of isosurfaces
|
268 | 1 | tkerber | # due to coarse grid spacings. Larger grid spacing -> larger relaxation.
|
269 | 1 | tkerber | x = self.get_grid_spacing().mean()/self.cell.get_characteristic_length() |
270 | 1 | tkerber | |
271 | 1 | tkerber | # The relaxation function f(x) satisfies the following requirements
|
272 | 1 | tkerber | # f(x) -> 0 for x -> 0+ and f(x) -> b for x -> inf
|
273 | 1 | tkerber | # f'(x) -> a for x -> 0+ and f'(x) -> 0 for x -> inf
|
274 | 1 | tkerber | |
275 | 1 | tkerber | # Furthermore, it is a rescaling of arctan, hence we know
|
276 | 1 | tkerber | # f(x) = 2 b arctan(a pi x / 2 b) / pi
|
277 | 1 | tkerber | |
278 | 1 | tkerber | # Our reference point is x = r for which medium relaxion is needed
|
279 | 1 | tkerber | # f(r) = b/2 <=> r = 2 b / a pi <=> a = 2 b / r pi
|
280 | 1 | tkerber | r = 0.025 # corresponding to 0.2 Ang grid spacing in 8 Ang cell |
281 | 1 | tkerber | b = 0.5
|
282 | 1 | tkerber | f = 2*b*np.arctan(x/r)/np.pi
|
283 | 1 | tkerber | |
284 | 1 | tkerber | if f > 0.1: |
285 | 1 | tkerber | return f.round(1) |
286 | 1 | tkerber | else:
|
287 | 1 | tkerber | return None |
288 | 1 | tkerber | |
289 | 1 | tkerber | def get_structured_points(self): |
290 | 1 | tkerber | return self.vtk_spts |
291 | 1 | tkerber | |
292 | 1 | tkerber | def add_scalar_field(self, data, name=None, active=True): |
293 | 1 | tkerber | |
294 | 1 | tkerber | # Make sure data argument is a valid array
|
295 | 1 | tkerber | if not isinstance(data, np.ndarray): |
296 | 1 | tkerber | data = np.array(data) |
297 | 1 | tkerber | |
298 | 1 | tkerber | assert data.dtype == float and data.shape == tuple(self.elements) |
299 | 1 | tkerber | |
300 | 1 | tkerber | # Convert scalar field to VTK array
|
301 | 1 | tkerber | npa2da = vtkDoubleArrayFromNumPyMultiArray(data[...,np.newaxis]) |
302 | 1 | tkerber | return vtkBaseGrid.add_scalar_data_array(self, npa2da, name, active) |
303 | 1 | tkerber | |
304 | 1 | tkerber | def add_vector_field(self, data, name=None, active=True): |
305 | 1 | tkerber | |
306 | 1 | tkerber | # Make sure data argument is a valid array
|
307 | 1 | tkerber | if not isinstance(data, np.ndarray): |
308 | 1 | tkerber | data = np.array(data) |
309 | 1 | tkerber | |
310 | 1 | tkerber | assert data.dtype == float and data.shape == tuple(self.elements)+(3,) |
311 | 1 | tkerber | |
312 | 1 | tkerber | # Convert vector field to VTK array
|
313 | 1 | tkerber | npa2da = vtkDoubleArrayFromNumPyMultiArray(data) |
314 | 1 | tkerber | return vtkBaseGrid.add_vector_data_array(self, npa2da, name, active) |