Statistiques
| Révision :

root / ase / utils / bee.py @ 3

Historique | Voir | Annoter | Télécharger (1,36 ko)

1 1 tkerber
import numpy as np
2 1 tkerber
3 1 tkerber
# NB! This module was ported from a 4 year old CamposASE2 module.
4 1 tkerber
5 1 tkerber
"""Bayesian Error Estimation
6 1 tkerber

7 1 tkerber
For details, see: "Bayesian Error Estimation in Density Functional
8 1 tkerber
Theory", J. J. Mortensen, K. Kaasbjerg, S. L. Frederiksen,
9 1 tkerber
J. K. Norskov, J. P. Sethna, K. W. Jacobsen, Phys. Rev. Lett. 95,
10 1 tkerber
216401 (2005)."""
11 1 tkerber
12 1 tkerber
#                                 T
13 1 tkerber
# cost(c) = cost0 + 0.5 * (c - c0) H (c - c0)
14 1 tkerber
#
15 1 tkerber
16 1 tkerber
# Cost function minimum value:
17 1 tkerber
cost0 = 3.4660625596
18 1 tkerber
19 1 tkerber
# Best fit parameters:
20 1 tkerber
c0 = np.array([1.000787451, 0.1926284063, 1.896191546])
21 1 tkerber
22 1 tkerber
# Hessian:
23 1 tkerber
# H = np.array([[ 1.770035168e+03, -3.732470432e+02, -2.105836167e+02],
24 1 tkerber
#               [-3.732470432e+02,  1.188857209e+02,  6.054102443e+01],
25 1 tkerber
#               [-2.105836167e+02,  6.054102443e+01,  3.211200293e+01]])
26 1 tkerber
#
27 1 tkerber
# 0.5 * np * T = cost0 (np=3: number of parameters)
28 1 tkerber
T = cost0 * 2 / 3
29 1 tkerber
30 1 tkerber
def make_ensemble(N=1000, seed=None):
31 1 tkerber
    np.random.seed(seed) # None means /dev/urandom seed
32 1 tkerber
    M = np.array([(0.066, -0.812, 1.996),
33 1 tkerber
                  (0.055, 0.206, 0.082),
34 1 tkerber
                  (-0.034, 0.007, 0.004)])
35 1 tkerber
    alpha = np.random.normal(0.0, 1.0, (N, 3))
36 1 tkerber
    return c0 + np.dot(alpha, M)
37 1 tkerber
38 1 tkerber
c = make_ensemble()
39 1 tkerber
40 1 tkerber
def get_ensemble_energies(atoms, c=c):
41 1 tkerber
    if hasattr(atoms, 'get_calculator'):
42 1 tkerber
        coefs = atoms.get_calculator().get_ensemble_coefficients()
43 1 tkerber
    else:
44 1 tkerber
        coefs = atoms
45 1 tkerber
    return coefs[0] + np.dot(c, coefs[1:])