root / ase / optimize / fmin_bfgs.py @ 3
Historique | Voir | Annoter | Télécharger (15,47 ko)
1 | 1 | tkerber | #__docformat__ = "restructuredtext en"
|
---|---|---|---|
2 | 1 | tkerber | # ******NOTICE***************
|
3 | 1 | tkerber | # optimize.py module by Travis E. Oliphant
|
4 | 1 | tkerber | #
|
5 | 1 | tkerber | # You may copy and use this module as you see fit with no
|
6 | 1 | tkerber | # guarantee implied provided you keep this notice in all copies.
|
7 | 1 | tkerber | # *****END NOTICE************
|
8 | 1 | tkerber | |
9 | 1 | tkerber | import numpy |
10 | 1 | tkerber | from numpy import atleast_1d, eye, mgrid, argmin, zeros, shape, empty, \ |
11 | 1 | tkerber | squeeze, vectorize, asarray, absolute, sqrt, Inf, asfarray, isinf |
12 | 1 | tkerber | from ase.utils.linesearch import LineSearch |
13 | 1 | tkerber | |
14 | 1 | tkerber | # These have been copied from Numeric's MLab.py
|
15 | 1 | tkerber | # I don't think they made the transition to scipy_core
|
16 | 1 | tkerber | |
17 | 1 | tkerber | # Copied and modified from scipy_optimize
|
18 | 1 | tkerber | abs = absolute |
19 | 1 | tkerber | import __builtin__ |
20 | 1 | tkerber | pymin = __builtin__.min |
21 | 1 | tkerber | pymax = __builtin__.max |
22 | 1 | tkerber | __version__="0.7"
|
23 | 1 | tkerber | _epsilon = sqrt(numpy.finfo(float).eps)
|
24 | 1 | tkerber | |
25 | 1 | tkerber | def fmin_bfgs(f, x0, fprime=None, args=(), gtol=1e-5, norm=Inf, |
26 | 1 | tkerber | epsilon=_epsilon, maxiter=None, full_output=0, disp=1, |
27 | 1 | tkerber | retall=0, callback=None, maxstep=0.2): |
28 | 1 | tkerber | """Minimize a function using the BFGS algorithm.
|
29 | 1 | tkerber |
|
30 | 1 | tkerber | Parameters:
|
31 | 1 | tkerber |
|
32 | 1 | tkerber | f : callable f(x,*args)
|
33 | 1 | tkerber | Objective function to be minimized.
|
34 | 1 | tkerber | x0 : ndarray
|
35 | 1 | tkerber | Initial guess.
|
36 | 1 | tkerber | fprime : callable f'(x,*args)
|
37 | 1 | tkerber | Gradient of f.
|
38 | 1 | tkerber | args : tuple
|
39 | 1 | tkerber | Extra arguments passed to f and fprime.
|
40 | 1 | tkerber | gtol : float
|
41 | 1 | tkerber | Gradient norm must be less than gtol before succesful termination.
|
42 | 1 | tkerber | norm : float
|
43 | 1 | tkerber | Order of norm (Inf is max, -Inf is min)
|
44 | 1 | tkerber | epsilon : int or ndarray
|
45 | 1 | tkerber | If fprime is approximated, use this value for the step size.
|
46 | 1 | tkerber | callback : callable
|
47 | 1 | tkerber | An optional user-supplied function to call after each
|
48 | 1 | tkerber | iteration. Called as callback(xk), where xk is the
|
49 | 1 | tkerber | current parameter vector.
|
50 | 1 | tkerber |
|
51 | 1 | tkerber | Returns: (xopt, {fopt, gopt, Hopt, func_calls, grad_calls, warnflag}, <allvecs>)
|
52 | 1 | tkerber |
|
53 | 1 | tkerber | xopt : ndarray
|
54 | 1 | tkerber | Parameters which minimize f, i.e. f(xopt) == fopt.
|
55 | 1 | tkerber | fopt : float
|
56 | 1 | tkerber | Minimum value.
|
57 | 1 | tkerber | gopt : ndarray
|
58 | 1 | tkerber | Value of gradient at minimum, f'(xopt), which should be near 0.
|
59 | 1 | tkerber | Bopt : ndarray
|
60 | 1 | tkerber | Value of 1/f''(xopt), i.e. the inverse hessian matrix.
|
61 | 1 | tkerber | func_calls : int
|
62 | 1 | tkerber | Number of function_calls made.
|
63 | 1 | tkerber | grad_calls : int
|
64 | 1 | tkerber | Number of gradient calls made.
|
65 | 1 | tkerber | warnflag : integer
|
66 | 1 | tkerber | 1 : Maximum number of iterations exceeded.
|
67 | 1 | tkerber | 2 : Gradient and/or function calls not changing.
|
68 | 1 | tkerber | allvecs : list
|
69 | 1 | tkerber | Results at each iteration. Only returned if retall is True.
|
70 | 1 | tkerber |
|
71 | 1 | tkerber | *Other Parameters*:
|
72 | 1 | tkerber | maxiter : int
|
73 | 1 | tkerber | Maximum number of iterations to perform.
|
74 | 1 | tkerber | full_output : bool
|
75 | 1 | tkerber | If True,return fopt, func_calls, grad_calls, and warnflag
|
76 | 1 | tkerber | in addition to xopt.
|
77 | 1 | tkerber | disp : bool
|
78 | 1 | tkerber | Print convergence message if True.
|
79 | 1 | tkerber | retall : bool
|
80 | 1 | tkerber | Return a list of results at each iteration if True.
|
81 | 1 | tkerber |
|
82 | 1 | tkerber | Notes:
|
83 | 1 | tkerber |
|
84 | 1 | tkerber | Optimize the function, f, whose gradient is given by fprime
|
85 | 1 | tkerber | using the quasi-Newton method of Broyden, Fletcher, Goldfarb,
|
86 | 1 | tkerber | and Shanno (BFGS) See Wright, and Nocedal 'Numerical
|
87 | 1 | tkerber | Optimization', 1999, pg. 198.
|
88 | 1 | tkerber |
|
89 | 1 | tkerber | *See Also*:
|
90 | 1 | tkerber |
|
91 | 1 | tkerber | scikits.openopt : SciKit which offers a unified syntax to call
|
92 | 1 | tkerber | this and other solvers.
|
93 | 1 | tkerber |
|
94 | 1 | tkerber | """
|
95 | 1 | tkerber | x0 = asarray(x0).squeeze() |
96 | 1 | tkerber | if x0.ndim == 0: |
97 | 1 | tkerber | x0.shape = (1,)
|
98 | 1 | tkerber | if maxiter is None: |
99 | 1 | tkerber | maxiter = len(x0)*200 |
100 | 1 | tkerber | func_calls, f = wrap_function(f, args) |
101 | 1 | tkerber | if fprime is None: |
102 | 1 | tkerber | grad_calls, myfprime = wrap_function(approx_fprime, (f, epsilon)) |
103 | 1 | tkerber | else:
|
104 | 1 | tkerber | grad_calls, myfprime = wrap_function(fprime, args) |
105 | 1 | tkerber | gfk = myfprime(x0) |
106 | 1 | tkerber | k = 0
|
107 | 1 | tkerber | N = len(x0)
|
108 | 1 | tkerber | I = numpy.eye(N,dtype=int)
|
109 | 1 | tkerber | Hk = I |
110 | 1 | tkerber | old_fval = f(x0) |
111 | 1 | tkerber | old_old_fval = old_fval + 5000
|
112 | 1 | tkerber | xk = x0 |
113 | 1 | tkerber | if retall:
|
114 | 1 | tkerber | allvecs = [x0] |
115 | 1 | tkerber | sk = [2*gtol]
|
116 | 1 | tkerber | warnflag = 0
|
117 | 1 | tkerber | gnorm = vecnorm(gfk,ord=norm) |
118 | 1 | tkerber | while (gnorm > gtol) and (k < maxiter): |
119 | 1 | tkerber | pk = -numpy.dot(Hk,gfk) |
120 | 1 | tkerber | ls = LineSearch() |
121 | 1 | tkerber | alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \ |
122 | 1 | tkerber | ls._line_search(f,myfprime,xk,pk,gfk, |
123 | 1 | tkerber | old_fval,old_old_fval,maxstep=maxstep) |
124 | 1 | tkerber | if alpha_k is None: # line search failed try different one. |
125 | 1 | tkerber | alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \ |
126 | 1 | tkerber | line_search(f,myfprime,xk,pk,gfk, |
127 | 1 | tkerber | old_fval,old_old_fval) |
128 | 1 | tkerber | if alpha_k is None: |
129 | 1 | tkerber | # This line search also failed to find a better solution.
|
130 | 1 | tkerber | warnflag = 2
|
131 | 1 | tkerber | break
|
132 | 1 | tkerber | xkp1 = xk + alpha_k * pk |
133 | 1 | tkerber | if retall:
|
134 | 1 | tkerber | allvecs.append(xkp1) |
135 | 1 | tkerber | sk = xkp1 - xk |
136 | 1 | tkerber | xk = xkp1 |
137 | 1 | tkerber | if gfkp1 is None: |
138 | 1 | tkerber | gfkp1 = myfprime(xkp1) |
139 | 1 | tkerber | |
140 | 1 | tkerber | yk = gfkp1 - gfk |
141 | 1 | tkerber | gfk = gfkp1 |
142 | 1 | tkerber | if callback is not None: |
143 | 1 | tkerber | callback(xk) |
144 | 1 | tkerber | k += 1
|
145 | 1 | tkerber | gnorm = vecnorm(gfk,ord=norm) |
146 | 1 | tkerber | if (gnorm <= gtol):
|
147 | 1 | tkerber | break
|
148 | 1 | tkerber | |
149 | 1 | tkerber | try: # this was handled in numeric, let it remaines for more safety |
150 | 1 | tkerber | rhok = 1.0 / (numpy.dot(yk,sk))
|
151 | 1 | tkerber | except ZeroDivisionError: |
152 | 1 | tkerber | rhok = 1000.0
|
153 | 1 | tkerber | print "Divide-by-zero encountered: rhok assumed large" |
154 | 1 | tkerber | if isinf(rhok): # this is patch for numpy |
155 | 1 | tkerber | rhok = 1000.0
|
156 | 1 | tkerber | print "Divide-by-zero encountered: rhok assumed large" |
157 | 1 | tkerber | A1 = I - sk[:,numpy.newaxis] * yk[numpy.newaxis,:] * rhok |
158 | 1 | tkerber | A2 = I - yk[:,numpy.newaxis] * sk[numpy.newaxis,:] * rhok |
159 | 1 | tkerber | Hk = numpy.dot(A1,numpy.dot(Hk,A2)) + rhok * sk[:,numpy.newaxis] \ |
160 | 1 | tkerber | * sk[numpy.newaxis,:] |
161 | 1 | tkerber | |
162 | 1 | tkerber | if disp or full_output: |
163 | 1 | tkerber | fval = old_fval |
164 | 1 | tkerber | if warnflag == 2: |
165 | 1 | tkerber | if disp:
|
166 | 1 | tkerber | print "Warning: Desired error not necessarily achieved" \ |
167 | 1 | tkerber | "due to precision loss"
|
168 | 1 | tkerber | print " Current function value: %f" % fval |
169 | 1 | tkerber | print " Iterations: %d" % k |
170 | 1 | tkerber | print " Function evaluations: %d" % func_calls[0] |
171 | 1 | tkerber | print " Gradient evaluations: %d" % grad_calls[0] |
172 | 1 | tkerber | |
173 | 1 | tkerber | elif k >= maxiter:
|
174 | 1 | tkerber | warnflag = 1
|
175 | 1 | tkerber | if disp:
|
176 | 1 | tkerber | print "Warning: Maximum number of iterations has been exceeded" |
177 | 1 | tkerber | print " Current function value: %f" % fval |
178 | 1 | tkerber | print " Iterations: %d" % k |
179 | 1 | tkerber | print " Function evaluations: %d" % func_calls[0] |
180 | 1 | tkerber | print " Gradient evaluations: %d" % grad_calls[0] |
181 | 1 | tkerber | else:
|
182 | 1 | tkerber | if disp:
|
183 | 1 | tkerber | print "Optimization terminated successfully." |
184 | 1 | tkerber | print " Current function value: %f" % fval |
185 | 1 | tkerber | print " Iterations: %d" % k |
186 | 1 | tkerber | print " Function evaluations: %d" % func_calls[0] |
187 | 1 | tkerber | print " Gradient evaluations: %d" % grad_calls[0] |
188 | 1 | tkerber | |
189 | 1 | tkerber | if full_output:
|
190 | 1 | tkerber | retlist = xk, fval, gfk, Hk, func_calls[0], grad_calls[0], warnflag |
191 | 1 | tkerber | if retall:
|
192 | 1 | tkerber | retlist += (allvecs,) |
193 | 1 | tkerber | else:
|
194 | 1 | tkerber | retlist = xk |
195 | 1 | tkerber | if retall:
|
196 | 1 | tkerber | retlist = (xk, allvecs) |
197 | 1 | tkerber | |
198 | 1 | tkerber | return retlist
|
199 | 1 | tkerber | |
200 | 1 | tkerber | def vecnorm(x, ord=2): |
201 | 1 | tkerber | if ord == Inf:
|
202 | 1 | tkerber | return numpy.amax(abs(x)) |
203 | 1 | tkerber | elif ord == -Inf:
|
204 | 1 | tkerber | return numpy.amin(abs(x)) |
205 | 1 | tkerber | else:
|
206 | 1 | tkerber | return numpy.sum(abs(x)**ord,axis=0)**(1.0/ord) |
207 | 1 | tkerber | |
208 | 1 | tkerber | def wrap_function(function, args): |
209 | 1 | tkerber | ncalls = [0]
|
210 | 1 | tkerber | def function_wrapper(x): |
211 | 1 | tkerber | ncalls[0] += 1 |
212 | 1 | tkerber | return function(x, *args)
|
213 | 1 | tkerber | return ncalls, function_wrapper
|
214 | 1 | tkerber | |
215 | 1 | tkerber | def _cubicmin(a,fa,fpa,b,fb,c,fc): |
216 | 1 | tkerber | # finds the minimizer for a cubic polynomial that goes through the
|
217 | 1 | tkerber | # points (a,fa), (b,fb), and (c,fc) with derivative at a of fpa.
|
218 | 1 | tkerber | #
|
219 | 1 | tkerber | # if no minimizer can be found return None
|
220 | 1 | tkerber | #
|
221 | 1 | tkerber | # f(x) = A *(x-a)^3 + B*(x-a)^2 + C*(x-a) + D
|
222 | 1 | tkerber | |
223 | 1 | tkerber | C = fpa |
224 | 1 | tkerber | D = fa |
225 | 1 | tkerber | db = b-a |
226 | 1 | tkerber | dc = c-a |
227 | 1 | tkerber | if (db == 0) or (dc == 0) or (b==c): return None |
228 | 1 | tkerber | denom = (db*dc)**2 * (db-dc)
|
229 | 1 | tkerber | d1 = empty((2,2)) |
230 | 1 | tkerber | d1[0,0] = dc**2 |
231 | 1 | tkerber | d1[0,1] = -db**2 |
232 | 1 | tkerber | d1[1,0] = -dc**3 |
233 | 1 | tkerber | d1[1,1] = db**3 |
234 | 1 | tkerber | [A,B] = numpy.dot(d1,asarray([fb-fa-C*db,fc-fa-C*dc]).flatten()) |
235 | 1 | tkerber | A /= denom |
236 | 1 | tkerber | B /= denom |
237 | 1 | tkerber | radical = B*B-3*A*C
|
238 | 1 | tkerber | if radical < 0: return None |
239 | 1 | tkerber | if (A == 0): return None |
240 | 1 | tkerber | xmin = a + (-B + sqrt(radical))/(3*A)
|
241 | 1 | tkerber | return xmin
|
242 | 1 | tkerber | |
243 | 1 | tkerber | def _quadmin(a,fa,fpa,b,fb): |
244 | 1 | tkerber | # finds the minimizer for a quadratic polynomial that goes through
|
245 | 1 | tkerber | # the points (a,fa), (b,fb) with derivative at a of fpa
|
246 | 1 | tkerber | # f(x) = B*(x-a)^2 + C*(x-a) + D
|
247 | 1 | tkerber | D = fa |
248 | 1 | tkerber | C = fpa |
249 | 1 | tkerber | db = b-a*1.0
|
250 | 1 | tkerber | if (db==0): return None |
251 | 1 | tkerber | B = (fb-D-C*db)/(db*db) |
252 | 1 | tkerber | if (B <= 0): return None |
253 | 1 | tkerber | xmin = a - C / (2.0*B)
|
254 | 1 | tkerber | return xmin
|
255 | 1 | tkerber | |
256 | 1 | tkerber | def zoom(a_lo, a_hi, phi_lo, phi_hi, derphi_lo, |
257 | 1 | tkerber | phi, derphi, phi0, derphi0, c1, c2): |
258 | 1 | tkerber | maxiter = 10
|
259 | 1 | tkerber | i = 0
|
260 | 1 | tkerber | delta1 = 0.2 # cubic interpolant check |
261 | 1 | tkerber | delta2 = 0.1 # quadratic interpolant check |
262 | 1 | tkerber | phi_rec = phi0 |
263 | 1 | tkerber | a_rec = 0
|
264 | 1 | tkerber | while 1: |
265 | 1 | tkerber | # interpolate to find a trial step length between a_lo and a_hi
|
266 | 1 | tkerber | # Need to choose interpolation here. Use cubic interpolation and then if the
|
267 | 1 | tkerber | # result is within delta * dalpha or outside of the interval bounded by a_lo or a_hi
|
268 | 1 | tkerber | # then use quadratic interpolation, if the result is still too close, then use bisection
|
269 | 1 | tkerber | |
270 | 1 | tkerber | dalpha = a_hi-a_lo; |
271 | 1 | tkerber | if dalpha < 0: a,b = a_hi,a_lo |
272 | 1 | tkerber | else: a,b = a_lo, a_hi
|
273 | 1 | tkerber | |
274 | 1 | tkerber | # minimizer of cubic interpolant
|
275 | 1 | tkerber | # (uses phi_lo, derphi_lo, phi_hi, and the most recent value of phi)
|
276 | 1 | tkerber | # if the result is too close to the end points (or out of the interval)
|
277 | 1 | tkerber | # then use quadratic interpolation with phi_lo, derphi_lo and phi_hi
|
278 | 1 | tkerber | # if the result is stil too close to the end points (or out of the interval)
|
279 | 1 | tkerber | # then use bisection
|
280 | 1 | tkerber | |
281 | 1 | tkerber | if (i > 0): |
282 | 1 | tkerber | cchk = delta1*dalpha |
283 | 1 | tkerber | a_j = _cubicmin(a_lo, phi_lo, derphi_lo, a_hi, phi_hi, a_rec, phi_rec) |
284 | 1 | tkerber | if (i==0) or (a_j is None) or (a_j > b-cchk) or (a_j < a+cchk): |
285 | 1 | tkerber | qchk = delta2*dalpha |
286 | 1 | tkerber | a_j = _quadmin(a_lo, phi_lo, derphi_lo, a_hi, phi_hi) |
287 | 1 | tkerber | if (a_j is None) or (a_j > b-qchk) or (a_j < a+qchk): |
288 | 1 | tkerber | a_j = a_lo + 0.5*dalpha
|
289 | 1 | tkerber | # print "Using bisection."
|
290 | 1 | tkerber | # else: print "Using quadratic."
|
291 | 1 | tkerber | # else: print "Using cubic."
|
292 | 1 | tkerber | |
293 | 1 | tkerber | # Check new value of a_j
|
294 | 1 | tkerber | |
295 | 1 | tkerber | phi_aj = phi(a_j) |
296 | 1 | tkerber | if (phi_aj > phi0 + c1*a_j*derphi0) or (phi_aj >= phi_lo): |
297 | 1 | tkerber | phi_rec = phi_hi |
298 | 1 | tkerber | a_rec = a_hi |
299 | 1 | tkerber | a_hi = a_j |
300 | 1 | tkerber | phi_hi = phi_aj |
301 | 1 | tkerber | else:
|
302 | 1 | tkerber | derphi_aj = derphi(a_j) |
303 | 1 | tkerber | if abs(derphi_aj) <= -c2*derphi0: |
304 | 1 | tkerber | a_star = a_j |
305 | 1 | tkerber | val_star = phi_aj |
306 | 1 | tkerber | valprime_star = derphi_aj |
307 | 1 | tkerber | break
|
308 | 1 | tkerber | if derphi_aj*(a_hi - a_lo) >= 0: |
309 | 1 | tkerber | phi_rec = phi_hi |
310 | 1 | tkerber | a_rec = a_hi |
311 | 1 | tkerber | a_hi = a_lo |
312 | 1 | tkerber | phi_hi = phi_lo |
313 | 1 | tkerber | else:
|
314 | 1 | tkerber | phi_rec = phi_lo |
315 | 1 | tkerber | a_rec = a_lo |
316 | 1 | tkerber | a_lo = a_j |
317 | 1 | tkerber | phi_lo = phi_aj |
318 | 1 | tkerber | derphi_lo = derphi_aj |
319 | 1 | tkerber | i += 1
|
320 | 1 | tkerber | if (i > maxiter):
|
321 | 1 | tkerber | a_star = a_j |
322 | 1 | tkerber | val_star = phi_aj |
323 | 1 | tkerber | valprime_star = None
|
324 | 1 | tkerber | break
|
325 | 1 | tkerber | return a_star, val_star, valprime_star
|
326 | 1 | tkerber | |
327 | 1 | tkerber | def line_search(f, myfprime, xk, pk, gfk, old_fval, old_old_fval, |
328 | 1 | tkerber | args=(), c1=1e-4, c2=0.9, amax=50): |
329 | 1 | tkerber | """Find alpha that satisfies strong Wolfe conditions.
|
330 | 1 | tkerber |
|
331 | 1 | tkerber | Parameters:
|
332 | 1 | tkerber |
|
333 | 1 | tkerber | f : callable f(x,*args)
|
334 | 1 | tkerber | Objective function.
|
335 | 1 | tkerber | myfprime : callable f'(x,*args)
|
336 | 1 | tkerber | Objective function gradient (can be None).
|
337 | 1 | tkerber | xk : ndarray
|
338 | 1 | tkerber | Starting point.
|
339 | 1 | tkerber | pk : ndarray
|
340 | 1 | tkerber | Search direction.
|
341 | 1 | tkerber | gfk : ndarray
|
342 | 1 | tkerber | Gradient value for x=xk (xk being the current parameter
|
343 | 1 | tkerber | estimate).
|
344 | 1 | tkerber | args : tuple
|
345 | 1 | tkerber | Additional arguments passed to objective function.
|
346 | 1 | tkerber | c1 : float
|
347 | 1 | tkerber | Parameter for Armijo condition rule.
|
348 | 1 | tkerber | c2 : float
|
349 | 1 | tkerber | Parameter for curvature condition rule.
|
350 | 1 | tkerber |
|
351 | 1 | tkerber | Returns:
|
352 | 1 | tkerber |
|
353 | 1 | tkerber | alpha0 : float
|
354 | 1 | tkerber | Alpha for which ``x_new = x0 + alpha * pk``.
|
355 | 1 | tkerber | fc : int
|
356 | 1 | tkerber | Number of function evaluations made.
|
357 | 1 | tkerber | gc : int
|
358 | 1 | tkerber | Number of gradient evaluations made.
|
359 | 1 | tkerber |
|
360 | 1 | tkerber | Notes:
|
361 | 1 | tkerber |
|
362 | 1 | tkerber | Uses the line search algorithm to enforce strong Wolfe
|
363 | 1 | tkerber | conditions. See Wright and Nocedal, 'Numerical Optimization',
|
364 | 1 | tkerber | 1999, pg. 59-60.
|
365 | 1 | tkerber |
|
366 | 1 | tkerber | For the zoom phase it uses an algorithm by [...].
|
367 | 1 | tkerber |
|
368 | 1 | tkerber | """
|
369 | 1 | tkerber | |
370 | 1 | tkerber | global _ls_fc, _ls_gc, _ls_ingfk
|
371 | 1 | tkerber | _ls_fc = 0
|
372 | 1 | tkerber | _ls_gc = 0
|
373 | 1 | tkerber | _ls_ingfk = None
|
374 | 1 | tkerber | def phi(alpha): |
375 | 1 | tkerber | global _ls_fc
|
376 | 1 | tkerber | _ls_fc += 1
|
377 | 1 | tkerber | return f(xk+alpha*pk,*args)
|
378 | 1 | tkerber | |
379 | 1 | tkerber | if isinstance(myfprime,type(())): |
380 | 1 | tkerber | def phiprime(alpha): |
381 | 1 | tkerber | global _ls_fc, _ls_ingfk
|
382 | 1 | tkerber | _ls_fc += len(xk)+1 |
383 | 1 | tkerber | eps = myfprime[1]
|
384 | 1 | tkerber | fprime = myfprime[0]
|
385 | 1 | tkerber | newargs = (f,eps) + args |
386 | 1 | tkerber | _ls_ingfk = fprime(xk+alpha*pk,*newargs) # store for later use
|
387 | 1 | tkerber | return numpy.dot(_ls_ingfk,pk)
|
388 | 1 | tkerber | else:
|
389 | 1 | tkerber | fprime = myfprime |
390 | 1 | tkerber | def phiprime(alpha): |
391 | 1 | tkerber | global _ls_gc, _ls_ingfk
|
392 | 1 | tkerber | _ls_gc += 1
|
393 | 1 | tkerber | _ls_ingfk = fprime(xk+alpha*pk,*args) # store for later use
|
394 | 1 | tkerber | return numpy.dot(_ls_ingfk,pk)
|
395 | 1 | tkerber | |
396 | 1 | tkerber | alpha0 = 0
|
397 | 1 | tkerber | phi0 = old_fval |
398 | 1 | tkerber | derphi0 = numpy.dot(gfk,pk) |
399 | 1 | tkerber | |
400 | 1 | tkerber | alpha1 = pymin(1.0,1.01*2*(phi0-old_old_fval)/derphi0) |
401 | 1 | tkerber | |
402 | 1 | tkerber | if alpha1 == 0: |
403 | 1 | tkerber | # This shouldn't happen. Perhaps the increment has slipped below
|
404 | 1 | tkerber | # machine precision? For now, set the return variables skip the
|
405 | 1 | tkerber | # useless while loop, and raise warnflag=2 due to possible imprecision.
|
406 | 1 | tkerber | alpha_star = None
|
407 | 1 | tkerber | fval_star = old_fval |
408 | 1 | tkerber | old_fval = old_old_fval |
409 | 1 | tkerber | fprime_star = None
|
410 | 1 | tkerber | |
411 | 1 | tkerber | phi_a1 = phi(alpha1) |
412 | 1 | tkerber | #derphi_a1 = phiprime(alpha1) evaluated below
|
413 | 1 | tkerber | |
414 | 1 | tkerber | phi_a0 = phi0 |
415 | 1 | tkerber | derphi_a0 = derphi0 |
416 | 1 | tkerber | |
417 | 1 | tkerber | i = 1
|
418 | 1 | tkerber | maxiter = 10
|
419 | 1 | tkerber | while 1: # bracketing phase |
420 | 1 | tkerber | if alpha1 == 0: |
421 | 1 | tkerber | break
|
422 | 1 | tkerber | if (phi_a1 > phi0 + c1*alpha1*derphi0) or \ |
423 | 1 | tkerber | ((phi_a1 >= phi_a0) and (i > 1)): |
424 | 1 | tkerber | alpha_star, fval_star, fprime_star = \ |
425 | 1 | tkerber | zoom(alpha0, alpha1, phi_a0, |
426 | 1 | tkerber | phi_a1, derphi_a0, phi, phiprime, |
427 | 1 | tkerber | phi0, derphi0, c1, c2) |
428 | 1 | tkerber | break
|
429 | 1 | tkerber | |
430 | 1 | tkerber | derphi_a1 = phiprime(alpha1) |
431 | 1 | tkerber | if (abs(derphi_a1) <= -c2*derphi0): |
432 | 1 | tkerber | alpha_star = alpha1 |
433 | 1 | tkerber | fval_star = phi_a1 |
434 | 1 | tkerber | fprime_star = derphi_a1 |
435 | 1 | tkerber | break
|
436 | 1 | tkerber | |
437 | 1 | tkerber | if (derphi_a1 >= 0): |
438 | 1 | tkerber | alpha_star, fval_star, fprime_star = \ |
439 | 1 | tkerber | zoom(alpha1, alpha0, phi_a1, |
440 | 1 | tkerber | phi_a0, derphi_a1, phi, phiprime, |
441 | 1 | tkerber | phi0, derphi0, c1, c2) |
442 | 1 | tkerber | break
|
443 | 1 | tkerber | |
444 | 1 | tkerber | alpha2 = 2 * alpha1 # increase by factor of two on each iteration |
445 | 1 | tkerber | i = i + 1
|
446 | 1 | tkerber | alpha0 = alpha1 |
447 | 1 | tkerber | alpha1 = alpha2 |
448 | 1 | tkerber | phi_a0 = phi_a1 |
449 | 1 | tkerber | phi_a1 = phi(alpha1) |
450 | 1 | tkerber | derphi_a0 = derphi_a1 |
451 | 1 | tkerber | |
452 | 1 | tkerber | # stopping test if lower function not found
|
453 | 1 | tkerber | if (i > maxiter):
|
454 | 1 | tkerber | alpha_star = alpha1 |
455 | 1 | tkerber | fval_star = phi_a1 |
456 | 1 | tkerber | fprime_star = None
|
457 | 1 | tkerber | break
|
458 | 1 | tkerber | |
459 | 1 | tkerber | if fprime_star is not None: |
460 | 1 | tkerber | # fprime_star is a number (derphi) -- so use the most recently
|
461 | 1 | tkerber | # calculated gradient used in computing it derphi = gfk*pk
|
462 | 1 | tkerber | # this is the gradient at the next step no need to compute it
|
463 | 1 | tkerber | # again in the outer loop.
|
464 | 1 | tkerber | fprime_star = _ls_ingfk |
465 | 1 | tkerber | |
466 | 1 | tkerber | return alpha_star, _ls_fc, _ls_gc, fval_star, old_fval, fprime_star
|
467 | 1 | tkerber | |
468 | 1 | tkerber | def approx_fprime(xk,f,epsilon,*args): |
469 | 1 | tkerber | f0 = f(*((xk,)+args)) |
470 | 1 | tkerber | grad = numpy.zeros((len(xk),), float) |
471 | 1 | tkerber | ei = numpy.zeros((len(xk),), float) |
472 | 1 | tkerber | for k in range(len(xk)): |
473 | 1 | tkerber | ei[k] = epsilon |
474 | 1 | tkerber | grad[k] = (f(*((xk+ei,)+args)) - f0)/epsilon |
475 | 1 | tkerber | ei[k] = 0.0
|
476 | 1 | tkerber | return grad
|