root / ase / utils / linesearch.py @ 20
Historique | Voir | Annoter | Télécharger (13,96 ko)
1 |
import numpy as np |
---|---|
2 |
import __builtin__ |
3 |
pymin = __builtin__.min |
4 |
pymax = __builtin__.max |
5 |
|
6 |
class LineSearch: |
7 |
def __init__(self, xtol=1e-14): |
8 |
|
9 |
self.xtol = xtol
|
10 |
self.task = 'START' |
11 |
self.isave = np.zeros((2,), np.intc) |
12 |
self.dsave = np.zeros((13,), float) |
13 |
self.fc = 0 |
14 |
self.gc = 0 |
15 |
self.case = 0 |
16 |
self.old_stp = 0 |
17 |
|
18 |
def _line_search(self, func, myfprime, xk, pk, gfk, old_fval, old_old_fval, |
19 |
maxstep=.2, c1=.23, c2=0.46, xtrapl=1.1, xtrapu=4., |
20 |
stpmax=50., stpmin=1e-8, args=()): |
21 |
self.stpmin = stpmin
|
22 |
self.pk = pk
|
23 |
p_size = np.sqrt((pk **2).sum())
|
24 |
self.stpmax = stpmax
|
25 |
self.xtrapl = xtrapl
|
26 |
self.xtrapu = xtrapu
|
27 |
self.maxstep = maxstep
|
28 |
phi0 = old_fval |
29 |
derphi0 = np.dot(gfk,pk) |
30 |
self.dim = len(pk) |
31 |
self.gms = np.sqrt(self.dim) * maxstep |
32 |
#alpha1 = pymin(maxstep,1.01*2*(phi0-old_old_fval)/derphi0)
|
33 |
alpha1 = 1.
|
34 |
self.no_update = False |
35 |
|
36 |
if isinstance(myfprime,type(())): |
37 |
eps = myfprime[1]
|
38 |
fprime = myfprime[0]
|
39 |
newargs = (f,eps) + args |
40 |
gradient = False
|
41 |
else:
|
42 |
fprime = myfprime |
43 |
newargs = args |
44 |
gradient = True
|
45 |
|
46 |
fval = old_fval |
47 |
gval = gfk |
48 |
self.steps=[]
|
49 |
|
50 |
while 1: |
51 |
stp = self.step(alpha1, phi0, derphi0, c1, c2,
|
52 |
self.xtol,
|
53 |
self.isave, self.dsave) |
54 |
|
55 |
if self.task[:2] == 'FG': |
56 |
alpha1 = stp |
57 |
fval = func(xk + stp * pk, *args) |
58 |
self.fc += 1 |
59 |
gval = fprime(xk + stp * pk, *newargs) |
60 |
if gradient: self.gc += 1 |
61 |
else: self.fc += len(xk) + 1 |
62 |
phi0 = fval |
63 |
derphi0 = np.dot(gval,pk) |
64 |
self.old_stp = alpha1
|
65 |
if self.no_update == True: |
66 |
break
|
67 |
else:
|
68 |
break
|
69 |
|
70 |
if self.task[:5] == 'ERROR' or self.task[1:4] == 'WARN': |
71 |
stp = None # failed |
72 |
return stp, fval, old_fval, self.no_update |
73 |
|
74 |
def step(self, stp, f, g, c1, c2, xtol, isave, dsave): |
75 |
if self.task[:5] == 'START': |
76 |
# Check the input arguments for errors.
|
77 |
if stp < self.stpmin: |
78 |
self.task = 'ERROR: STP .LT. minstep' |
79 |
if stp > self.stpmax: |
80 |
self.task = 'ERROR: STP .GT. maxstep' |
81 |
if g >= 0: |
82 |
self.task = 'ERROR: INITIAL G >= 0' |
83 |
if c1 < 0: |
84 |
self.task = 'ERROR: c1 .LT. 0' |
85 |
if c2 < 0: |
86 |
self.task = 'ERROR: c2 .LT. 0' |
87 |
if xtol < 0: |
88 |
self.task = 'ERROR: XTOL .LT. 0' |
89 |
if self.stpmin < 0: |
90 |
self.task = 'ERROR: minstep .LT. 0' |
91 |
if self.stpmax < self.stpmin: |
92 |
self.task = 'ERROR: maxstep .LT. minstep' |
93 |
if self.task[:5] == 'ERROR': |
94 |
return stp
|
95 |
|
96 |
# Initialize local variables.
|
97 |
self.bracket = False |
98 |
stage = 1
|
99 |
finit = f |
100 |
ginit = g |
101 |
gtest = c1 * ginit |
102 |
width = self.stpmax - self.stpmin |
103 |
width1 = width / .5
|
104 |
# The variables stx, fx, gx contain the values of the step,
|
105 |
# function, and derivative at the best step.
|
106 |
# The variables sty, fy, gy contain the values of the step,
|
107 |
# function, and derivative at sty.
|
108 |
# The variables stp, f, g contain the values of the step,
|
109 |
# function, and derivative at stp.
|
110 |
stx = 0
|
111 |
fx = finit |
112 |
gx = ginit |
113 |
sty = 0
|
114 |
fy = finit |
115 |
gy = ginit |
116 |
stmin = 0
|
117 |
stmax = stp + self.xtrapu * stp
|
118 |
self.task = 'FG' |
119 |
self.save((stage, ginit, gtest, gx,
|
120 |
gy, finit, fx, fy, stx, sty, |
121 |
stmin, stmax, width, width1)) |
122 |
stp = self.determine_step(stp)
|
123 |
#return stp, f, g
|
124 |
return stp
|
125 |
else:
|
126 |
if self.isave[0] == 1: |
127 |
self.bracket = True |
128 |
else:
|
129 |
self.bracket = False |
130 |
stage = self.isave[1] |
131 |
(ginit, gtest, gx, gy, finit, fx, fy, stx, sty, stmin, stmax, \ |
132 |
width, width1) =self.dsave
|
133 |
|
134 |
# If psi(stp) <= 0 and f'(stp) >= 0 for some step, then the
|
135 |
# algorithm enters the second stage.
|
136 |
ftest = finit + stp * gtest |
137 |
if stage == 1 and f < ftest and g >= 0.: |
138 |
stage = 2
|
139 |
|
140 |
# Test for warnings.
|
141 |
if self.bracket and (stp <= stmin or stp >= stmax): |
142 |
self.task = 'WARNING: ROUNDING ERRORS PREVENT PROGRESS' |
143 |
if self.bracket and stmax - stmin <= self.xtol * stmax: |
144 |
self.task = 'WARNING: XTOL TEST SATISFIED' |
145 |
if stp == self.stpmax and f <= ftest and g <= gtest: |
146 |
self.task = 'WARNING: STP = maxstep' |
147 |
if stp == self.stpmin and (f > ftest or g >= gtest): |
148 |
self.task = 'WARNING: STP = minstep' |
149 |
|
150 |
# Test for convergence.
|
151 |
if f <= ftest and abs(g) <= c2 * (- ginit): |
152 |
self.task = 'CONVERGENCE' |
153 |
|
154 |
# Test for termination.
|
155 |
if self.task[:4] == 'WARN' or self.task[:4] == 'CONV': |
156 |
self.save((stage, ginit, gtest, gx,
|
157 |
gy, finit, fx, fy, stx, sty, |
158 |
stmin, stmax, width, width1)) |
159 |
#return stp, f, g
|
160 |
return stp
|
161 |
|
162 |
# A modified function is used to predict the step during the
|
163 |
# first stage if a lower function value has been obtained but
|
164 |
# the decrease is not sufficient.
|
165 |
#if stage == 1 and f <= fx and f > ftest:
|
166 |
# # Define the modified function and derivative values.
|
167 |
# fm =f - stp * gtest
|
168 |
# fxm = fx - stx * gtest
|
169 |
# fym = fy - sty * gtest
|
170 |
# gm = g - gtest
|
171 |
# gxm = gx - gtest
|
172 |
# gym = gy - gtest
|
173 |
|
174 |
# Call step to update stx, sty, and to compute the new step.
|
175 |
# stx, sty, stp, gxm, fxm, gym, fym = self.update (stx, fxm, gxm, sty,
|
176 |
# fym, gym, stp, fm, gm,
|
177 |
# stmin, stmax)
|
178 |
|
179 |
# # Reset the function and derivative values for f.
|
180 |
|
181 |
# fx = fxm + stx * gtest
|
182 |
# fy = fym + sty * gtest
|
183 |
# gx = gxm + gtest
|
184 |
# gy = gym + gtest
|
185 |
|
186 |
#else:
|
187 |
# Call step to update stx, sty, and to compute the new step.
|
188 |
|
189 |
stx, sty, stp, gx, fx, gy, fy= self.update(stx, fx, gx, sty,
|
190 |
fy, gy, stp, f, g, |
191 |
stmin, stmax) |
192 |
|
193 |
|
194 |
# Decide if a bisection step is needed.
|
195 |
|
196 |
if self.bracket: |
197 |
if abs(sty-stx) >= .66 * width1: |
198 |
stp = stx + .5 * (sty - stx)
|
199 |
width1 = width |
200 |
width = abs(sty - stx)
|
201 |
|
202 |
# Set the minimum and maximum steps allowed for stp.
|
203 |
|
204 |
if self.bracket: |
205 |
stmin = min(stx, sty)
|
206 |
stmax = max(stx, sty)
|
207 |
else:
|
208 |
stmin = stp + self.xtrapl * (stp - stx)
|
209 |
stmax = stp + self.xtrapu * (stp - stx)
|
210 |
|
211 |
# Force the step to be within the bounds maxstep and minstep.
|
212 |
|
213 |
stp = max(stp, self.stpmin) |
214 |
stp = min(stp, self.stpmax) |
215 |
|
216 |
if (stx == stp and stp == self.stpmax and stmin > self.stpmax): |
217 |
self.no_update = True |
218 |
# If further progress is not possible, let stp be the best
|
219 |
# point obtained during the search.
|
220 |
|
221 |
if (self.bracket and stp < stmin or stp >= stmax) \ |
222 |
or (self.bracket and stmax - stmin < self.xtol * stmax): |
223 |
stp = stx |
224 |
|
225 |
# Obtain another function and derivative.
|
226 |
|
227 |
self.task = 'FG' |
228 |
self.save((stage, ginit, gtest, gx,
|
229 |
gy, finit, fx, fy, stx, sty, |
230 |
stmin, stmax, width, width1)) |
231 |
return stp
|
232 |
|
233 |
def update(self, stx, fx, gx, sty, fy, gy, stp, fp, gp, |
234 |
stpmin, stpmax): |
235 |
sign = gp * (gx / abs(gx))
|
236 |
|
237 |
# First case: A higher function value. The minimum is bracketed.
|
238 |
# If the cubic step is closer to stx than the quadratic step, the
|
239 |
# cubic step is taken, otherwise the average of the cubic and
|
240 |
# quadratic steps is taken.
|
241 |
if fp > fx: #case1 |
242 |
self.case = 1 |
243 |
theta = 3. * (fx - fp) / (stp - stx) + gx + gp
|
244 |
s = max(abs(theta), abs(gx), abs(gp)) |
245 |
gamma = s * np.sqrt((theta / s) ** 2. - (gx / s) * (gp / s))
|
246 |
if stp < stx:
|
247 |
gamma = -gamma |
248 |
p = (gamma - gx) + theta |
249 |
q = ((gamma - gx) + gamma) + gp |
250 |
r = p / q |
251 |
stpc = stx + r * (stp - stx) |
252 |
stpq = stx + ((gx / ((fx - fp) / (stp-stx) + gx)) / 2.) \
|
253 |
* (stp - stx) |
254 |
if (abs(stpc - stx) < abs(stpq - stx)): |
255 |
stpf = stpc |
256 |
else:
|
257 |
stpf = stpc + (stpq - stpc) / 2.
|
258 |
|
259 |
self.bracket = True |
260 |
|
261 |
# Second case: A lower function value and derivatives of opposite
|
262 |
# sign. The minimum is bracketed. If the cubic step is farther from
|
263 |
# stp than the secant step, the cubic step is taken, otherwise the
|
264 |
# secant step is taken.
|
265 |
|
266 |
elif sign < 0: #case2 |
267 |
self.case = 2 |
268 |
theta = 3. * (fx - fp) / (stp - stx) + gx + gp
|
269 |
s = max(abs(theta), abs(gx), abs(gp)) |
270 |
gamma = s * np.sqrt((theta / s) ** 2 - (gx / s) * (gp / s))
|
271 |
if stp > stx:
|
272 |
gamma = -gamma |
273 |
p = (gamma - gp) + theta |
274 |
q = ((gamma - gp) + gamma) + gx |
275 |
r = p / q |
276 |
stpc = stp + r * (stx - stp) |
277 |
stpq = stp + (gp / (gp - gx)) * (stx - stp) |
278 |
if (abs(stpc - stp) > abs(stpq - stp)): |
279 |
stpf = stpc |
280 |
else:
|
281 |
stpf = stpq |
282 |
self.bracket = True |
283 |
|
284 |
# Third case: A lower function value, derivatives of the same sign,
|
285 |
# and the magnitude of the derivative decreases.
|
286 |
|
287 |
elif abs(gp) < abs(gx): #case3 |
288 |
self.case = 3 |
289 |
# The cubic step is computed only if the cubic tends to infinity
|
290 |
# in the direction of the step or if the minimum of the cubic
|
291 |
# is beyond stp. Otherwise the cubic step is defined to be the
|
292 |
# secant step.
|
293 |
|
294 |
theta = 3. * (fx - fp) / (stp - stx) + gx + gp
|
295 |
s = max(abs(theta), abs(gx), abs(gp)) |
296 |
|
297 |
# The case gamma = 0 only arises if the cubic does not tend
|
298 |
# to infinity in the direction of the step.
|
299 |
|
300 |
gamma = s * np.sqrt(max(0.,(theta / s) ** 2-(gx / s) * (gp / s))) |
301 |
if stp > stx:
|
302 |
gamma = -gamma |
303 |
p = (gamma - gp) + theta |
304 |
q = (gamma + (gx - gp)) + gamma |
305 |
r = p / q |
306 |
if r < 0. and gamma != 0: |
307 |
stpc = stp + r * (stx - stp) |
308 |
elif stp > stx:
|
309 |
stpc = stpmax |
310 |
else:
|
311 |
stpc = stpmin |
312 |
stpq = stp + (gp / (gp - gx)) * (stx - stp) |
313 |
|
314 |
if self.bracket: |
315 |
|
316 |
# A minimizer has been bracketed. If the cubic step is
|
317 |
# closer to stp than the secant step, the cubic step is
|
318 |
# taken, otherwise the secant step is taken.
|
319 |
|
320 |
if abs(stpc - stp) < abs(stpq - stp): |
321 |
stpf = stpc |
322 |
else:
|
323 |
stpf = stpq |
324 |
if stp > stx:
|
325 |
stpf = min(stp + .66 * (sty - stp), stpf) |
326 |
else:
|
327 |
stpf = max(stp + .66 * (sty - stp), stpf) |
328 |
else:
|
329 |
|
330 |
# A minimizer has not been bracketed. If the cubic step is
|
331 |
# farther from stp than the secant step, the cubic step is
|
332 |
# taken, otherwise the secant step is taken.
|
333 |
|
334 |
if abs(stpc - stp) > abs(stpq - stp): |
335 |
stpf = stpc |
336 |
else:
|
337 |
stpf = stpq |
338 |
stpf = min(stpmax, stpf)
|
339 |
stpf = max(stpmin, stpf)
|
340 |
|
341 |
# Fourth case: A lower function value, derivatives of the same sign,
|
342 |
# and the magnitude of the derivative does not decrease. If the
|
343 |
# minimum is not bracketed, the step is either minstep or maxstep,
|
344 |
# otherwise the cubic step is taken.
|
345 |
|
346 |
else: #case4 |
347 |
self.case = 4 |
348 |
if self.bracket: |
349 |
theta = 3. * (fp - fy) / (sty - stp) + gy + gp
|
350 |
s = max(abs(theta), abs(gy), abs(gp)) |
351 |
gamma = s * np.sqrt((theta / s) ** 2 - (gy / s) * (gp / s))
|
352 |
if stp > sty:
|
353 |
gamma = -gamma |
354 |
p = (gamma - gp) + theta |
355 |
q = ((gamma - gp) + gamma) + gy |
356 |
r = p / q |
357 |
stpc = stp + r * (sty - stp) |
358 |
stpf = stpc |
359 |
elif stp > stx:
|
360 |
stpf = stpmax |
361 |
else:
|
362 |
stpf = stpmin |
363 |
|
364 |
# Update the interval which contains a minimizer.
|
365 |
|
366 |
if fp > fx:
|
367 |
sty = stp |
368 |
fy = fp |
369 |
gy = gp |
370 |
else:
|
371 |
if sign < 0: |
372 |
sty = stx |
373 |
fy = fx |
374 |
gy = gx |
375 |
stx = stp |
376 |
fx = fp |
377 |
gx = gp |
378 |
# Compute the new step.
|
379 |
|
380 |
stp = self.determine_step(stpf)
|
381 |
|
382 |
return stx, sty, stp, gx, fx, gy, fy
|
383 |
|
384 |
def determine_step(self, stp): |
385 |
dr = stp - self.old_stp
|
386 |
if abs(pymax(self.pk) * dr) > self.maxstep: |
387 |
dr /= abs((pymax(self.pk) * dr) / self.maxstep) |
388 |
stp = self.old_stp + dr
|
389 |
return stp
|
390 |
|
391 |
def save(self, data): |
392 |
if self.bracket: |
393 |
self.isave[0] = 1 |
394 |
else:
|
395 |
self.isave[0] = 0 |
396 |
self.isave[1] = data[0] |
397 |
self.dsave = data[1:] |