Statistiques
| Révision :

root / ase / utils / bee.py @ 20

Historique | Voir | Annoter | Télécharger (1,36 ko)

1
import numpy as np
2

    
3
# NB! This module was ported from a 4 year old CamposASE2 module.
4

    
5
"""Bayesian Error Estimation
6

7
For details, see: "Bayesian Error Estimation in Density Functional
8
Theory", J. J. Mortensen, K. Kaasbjerg, S. L. Frederiksen,
9
J. K. Norskov, J. P. Sethna, K. W. Jacobsen, Phys. Rev. Lett. 95,
10
216401 (2005)."""
11

    
12
#                                 T
13
# cost(c) = cost0 + 0.5 * (c - c0) H (c - c0)
14
#
15

    
16
# Cost function minimum value:
17
cost0 = 3.4660625596
18

    
19
# Best fit parameters:
20
c0 = np.array([1.000787451, 0.1926284063, 1.896191546])
21

    
22
# Hessian:
23
# H = np.array([[ 1.770035168e+03, -3.732470432e+02, -2.105836167e+02],
24
#               [-3.732470432e+02,  1.188857209e+02,  6.054102443e+01],
25
#               [-2.105836167e+02,  6.054102443e+01,  3.211200293e+01]])
26
#
27
# 0.5 * np * T = cost0 (np=3: number of parameters)
28
T = cost0 * 2 / 3
29

    
30
def make_ensemble(N=1000, seed=None):
31
    np.random.seed(seed) # None means /dev/urandom seed
32
    M = np.array([(0.066, -0.812, 1.996),
33
                  (0.055, 0.206, 0.082),
34
                  (-0.034, 0.007, 0.004)])
35
    alpha = np.random.normal(0.0, 1.0, (N, 3))
36
    return c0 + np.dot(alpha, M)
37

    
38
c = make_ensemble()
39

    
40
def get_ensemble_energies(atoms, c=c):
41
    if hasattr(atoms, 'get_calculator'):
42
        coefs = atoms.get_calculator().get_ensemble_coefficients()
43
    else:
44
        coefs = atoms
45
    return coefs[0] + np.dot(c, coefs[1:])