Statistiques
| Révision :

root / ase / embed.py @ 20

Historique | Voir | Annoter | Télécharger (11,69 ko)

1
"""
2
This module is the EMBED module for ASE
3
implemented by T. Kerber
4

5
Torsten Kerber, ENS LYON: 2011, 07, 11
6

7
This work is supported by Award No. UK-C0017, made by King Abdullah
8
University of Science and Technology (KAUST)
9
"""
10

    
11
import math
12
from ase import Atom, Atoms
13
from ase.data import covalent_radii, atomic_numbers
14

    
15
import numpy as np
16

    
17
class Embed(Atoms):
18
    #--- constructor of the Embed class ---
19
    def __init__(self, system, cluster, cell_cluster = "Auto", cluster_pos = True, linkType = 'H'):
20
        super(Embed, self).__init__()
21
        # define the atom map
22
        self.atom_map_sys_cl = []
23
        self.atom_map_cl_sys = []
24
        self.linkatoms = []
25
        # cluster dimensions
26
        self.xyz_cl_min = None
27
        self.xyz_cl_max = None
28
        # set the search radius for link atoms
29
        self.d = 10
30
        # define the systems for calculations
31
        if system is None or cluster is None:
32
            raise RuntimeError("Embed: system or cluster is not definied")
33
        self.set_system(system)
34
        if cluster_pos:
35
            self.set_cluster(cluster)
36
        else:
37
            self.set_cluster_by_numbers(cluster)
38
            
39
        # set the cell of the system
40
        self.set_cell(system.get_cell())
41
        self.cell_cluster = cell_cluster
42
        
43
        self.embed(linkType)
44
        return
45

    
46
    #--- set the cluster ---
47
    def set_cluster(self, atoms):
48
        import copy
49
        # set the min/max cluster dimensions
50
        self.xyz_cl_min = atoms[0].get_position()
51
        self.xyz_cl_max = atoms[0].get_position()
52
        for atom in atoms:
53
            # assign the label "Cluster (10)" in atom.TAG
54
            atom.set_tag(10)
55
            xyz=atom.get_position()
56
            for i in xrange(3):
57
                # set the min/max cluster dimensions
58
                if xyz[i] < self.xyz_cl_min[i]:
59
                    self.xyz_cl_min[i] = xyz[i]
60
                if xyz[i] > self.xyz_cl_max[i]:
61
                    self.xyz_cl_max[i] = xyz[i]
62

    
63
        # add self.d around min/max cluster dimensions
64
        self.xyz_cl_min -= [self.d, self.d, self.d]
65
        self.xyz_cl_max += [self.d, self.d, self.d]
66
        # set the cluster for low and high level calculation
67
        self.atoms_cluster = atoms
68
        return
69
        
70
    #--- set cluster by atom numbers ---
71
    def set_cluster_by_numbers(self, numbers):
72
        cluster = Atoms()
73
        nat = len(self.atoms_system)
74
        for number in numbers:
75
            if nat > numbers:
76
                raise RuntimeError("QMX: The number of the cluster atom ", number, "is bigger than the number of atoms")
77
            cluster.append(self.atoms_system[number-1])
78
        self.set_cluster(cluster)
79

    
80
    #--- set the system ---
81
    def set_system(self, atoms):
82
        self.atoms_system = atoms
83
        # assign the label "Cluster (10)" in atom.TAG
84
        for atom in atoms:
85
            atom.set_tag(0)
86
        # update search radius for link atoms
87
        dx = 0
88
        for atom in atoms:
89
            r = covalent_radii[atom.get_atomic_number()]
90
            if (r > dx):
91
                dx = r
92
        self.d = dx * 2.1
93
        return
94

    
95
    #--- return cluster ---
96
    def get_cluster(self):
97
        return self.atoms_cluster
98

    
99
    def get_system(self):
100
        return self.atoms_system
101

    
102
    #--- Embedding ---
103
    def embed(self, linkType):
104
        # is the cluster and the host system definied ?
105
        if self.atoms_cluster is None or self.atoms_system is None:
106
            return
107
        self.find_cluster()
108
        self.set_linkatoms(linkType)
109
        print "link atoms found: ", len(self.linkatoms)
110
        if self.cell_cluster == "System":
111
            self.atoms_cluster.set_cell(self.atoms_system.get_cell())
112
        elif self.cell_cluster == "Auto":
113
            positions = self.atoms_cluster.get_positions()
114
            # build cell
115
            cell = np.zeros((3, 3),  float)
116
            #for all directions
117
            for idir in xrange(3):
118
                #find the biggest dimensions of the cluster in x,y,z direction
119
                l = positions[:, idir].max() - positions[:, idir].min()
120
                # calculate the box parameters (2*cluster + 60 pm)
121
                l = (math.floor((2*l+6)/2.5)+1)*2.5
122
                # apply cell parameters
123
                cell[idir, idir] = l
124
            # set parameters to cluster
125
            self.atoms_cluster.set_cell(cell)
126
            # print information on the screen
127
            print "dimension of box surrounding the cluster: ", 
128
            for idir in xrange(3):
129
                print cell[idir, idir]*10, 
130
            print " pm"
131
        else:
132
            self.atoms_cluster.set_cell(self.cell_cluster)
133

    
134
    def find_cluster(self):
135
        # set tolerance
136
        d = 0.001
137
        #atoms
138
        xyzs_cl=[]
139
        for atom_cl in self.atoms_cluster:
140
            xyzs_cl.append(atom_cl.get_position())
141
        xyzs_sys=[]
142
        for atom_sys in self.atoms_system:
143
            xyzs_sys.append(atom_sys.get_position())
144

    
145
        self.atom_map_sys_cl = np.zeros(len(self.atoms_system), int)
146
        self.atom_map_cl_sys = np.zeros(len(self.atoms_cluster), int)
147
        # loop over cluster atoms atom_sys
148
        for iat_sys in xrange(len(self.atoms_system)):
149
            # get the coordinates of the system atom atom_sys
150
            xyz_sys = xyzs_sys[iat_sys]
151
            # bSysOnly: no identical atom has been found
152
            bSysOnly = True
153
            # loop over system atoms atom_cl
154
            for iat_cl in xrange(len(self.atoms_cluster)):
155
                # difference vector between both atoms
156
                xyz_diff = np.abs(xyzs_sys[iat_sys]-xyzs_cl[iat_cl])
157
                # identical atoms
158
                if xyz_diff[0] < d and xyz_diff[1] < d and xyz_diff[2] < d:
159
                    # set tag (CLUSTER+HOST: 10) to atom_sys
160
                    self.atoms_system[iat_sys].set_tag(10)
161
                    # map the atom in the atom list
162
                    self.atom_map_sys_cl[iat_sys] = iat_cl
163
                    self.atom_map_cl_sys[iat_cl] = iat_sys
164
                    # atom has been identified
165
                    bSysOnly = False
166
                    break
167
            if bSysOnly:
168
                self.atom_map_sys_cl[iat_sys] = -1
169

    
170
    def set_linkatoms(self, linkType, tol=15.):
171
        # local copies of xyz coordinates to avoid massive copying of xyz objects
172
        xyzs_cl=[]
173
        for atom_cl in self.atoms_cluster:
174
            xyzs_cl.append(atom_cl.get_position())
175
        xyzs_sys=[]
176
        for atom_sys in self.atoms_system:
177
            xyzs_sys.append(atom_sys.get_position())
178
        # number of atoms in the cluster and the system
179
        nat_cl=len(self.atoms_cluster)
180
        nat_sys=len(self.atoms_system)
181
        # system has pbc?
182
        pbc = self.get_pbc()
183
        # set the bond table
184
        bonds = []
185
        # set the 27 cell_vec, starting with the (0,0,0) vector for the unit cell
186
        cells_L = [(0.0,  0.0,  0.0)]
187
        # get the cell vectors of the host system and build up a 3 by 3 supercell to search for neighbors in the surrounding
188
        cell = self.atoms_system.get_cell()
189
        if self.atoms_system.get_pbc().any():
190
            for ix in xrange(-1, 2):
191
                for iy in xrange(-1, 2):
192
                    for iz in xrange(-1, 2):
193
                        if ix == 0 and iy == 0 and iz == 0:
194
                            continue
195
                        cells_L.append(np.dot([ix, iy, iz], cell))
196
        # save the radius of system atoms
197
        rs_sys = []
198
        for atom in self.atoms_system:
199
            rs_sys.append(covalent_radii[atom.get_atomic_number()])
200
        # sum over cluster atoms (iat_cl)
201
        for iat_cl in xrange(nat_cl):
202
            # get the cluster atom
203
            atom_cl=self.atoms_cluster[iat_cl]
204
            # ignore link atoms
205
            if atom_cl.get_tag() == 50:
206
                continue
207
            # xyz coordinates and covalent radius of the cluster atom iat_cl
208
            xyz_cl = xyzs_cl[iat_cl]
209
            r_cl = covalent_radii[atom_cl.get_atomic_number()]
210

    
211
            # sum over system atoms (iat_sys)
212
            for iat_sys in xrange(nat_sys):
213
                # avoid cluster atoms
214
                if self.atoms_system[iat_sys].get_tag()==10:
215
                    continue
216
                # sum over all cell_L
217
                for cell_L in cells_L:
218
                    # xyz coordinates and covalent radius of the system atom iat_sys
219
                    xyz_sys = xyzs_sys[iat_sys]+cell_L
220
                    # go only in distance self.d around the cluster
221
                    lcont = True
222
                    for i in xrange(3):
223
                        if (xyz_sys[i] < self.xyz_cl_min[i] or
224
                            xyz_sys[i] > self.xyz_cl_max[i]):
225
                            lcont = False
226
                            break
227
                    if not lcont:
228
                        continue
229
                    # xyz coordinates and covalent radius of the system atom iat_sys
230
                    r_sys = rs_sys[iat_sys]
231
                    # diff vector
232
                    xyz_diff = xyz_sys - xyz_cl
233
                    # distance between the atoms
234
                    r = np.sqrt(np.dot(xyz_diff, xyz_diff))
235
                    # ratio of the distance to the sum of covalent radius
236
                    f = r / (r_cl + r_sys)
237
                    if f <= (1+tol/100.) and f >= (1-2*tol/100.):
238
                        s = cell_L, self.atom_map_cl_sys[iat_cl], iat_sys, r_cl
239
                        bonds.append(s)
240
                        break
241
                    if f <= (1-2*tol/100.):
242
                        raise RuntimeError("QMX: The cluster atom", iat_cl, " and the system atom", iat_sys, "came too close")
243

    
244
        r_h = covalent_radii[atomic_numbers[linkType]]
245
        for bond in bonds:
246
            cell_L, iat_cl_sys, iat_sys, r_cl = bond
247
            # assign the tags for the border atoms
248
            atom_sys.set_tag(1)
249
            atom_cl.set_tag(11)
250
            #difference vector for the link atom, scaling
251
            xyz_diff = xyzs_sys[iat_sys] + cell_L - xyzs_sys[iat_cl_sys]
252
            r = (r_cl + r_h)
253
            xyz_diff *=  r / np.sqrt(np.dot(xyz_diff, xyz_diff))
254
            # determine position of the link atom
255
            xyz_diff += xyzs_sys[iat_cl_sys]
256
            # create link atom
257
            atom = Atom(symbol=linkType, position=xyz_diff, tag=50)
258
            # add atom to cluster
259
            self.atoms_cluster.append(atom)
260
            # add atom to the linkatoms
261
            s = cell_L, iat_cl_sys, iat_sys, r, len(self.atoms_cluster)-1
262
            self.linkatoms.append(s)
263
        return
264

    
265
    def set_positions(self, positions_new):
266
        # number of atoms
267
        nat_sys=len(self.atoms_system)
268
        # go over all pairs of atoms
269
        for iat_sys in xrange(nat_sys):
270
            xyz = positions_new[iat_sys]
271
            self.atoms_system[iat_sys].set_position(xyz)
272
            iat_cl = self.atom_map_sys_cl[iat_sys]
273
            if iat_cl > -1:
274
                self.atoms_cluster[iat_cl].set_position(xyz)
275

    
276
        for cell_L, iat_cl_sys, iat_sys, r, iat in self.linkatoms:
277
            # determine position of the link atom
278
            xyz_cl = positions_new[iat_cl_sys]
279
            xyz = positions_new[iat_sys] - xyz_cl + cell_L
280
            xyz *= r / np.sqrt(np.dot(xyz, xyz))
281
            xyz += xyz_cl
282
            # update xyz coordinates of the cluster
283
            self.atoms_cluster[iat].set_position(xyz)
284

    
285
    def __getitem__(self, i):
286
        return self.atoms_system.__getitem__(i)
287

    
288
    def get_positions(self):
289
        return self.atoms_system.get_positions()
290

    
291
    def __add__(self, other):
292
        return self.atoms_system.__add__(other)
293

    
294
    def __delitem__(self, i):
295
        return self.atoms_system.__delitem__(i)
296

    
297
    def __len__(self):
298
        return self.atoms_system.__len__()
299
        
300
    def get_chemical_symbols(self, reduce=False):
301
        return self.atoms_system.get_chemical_symbols(reduce)