root / ase / embed.py @ 2
Historique | Voir | Annoter | Télécharger (9,78 ko)
1 |
from ase import Atom, Atoms |
---|---|
2 |
from ase.data import covalent_radii, atomic_numbers |
3 |
|
4 |
import numpy as np |
5 |
|
6 |
class Embed(Atoms): |
7 |
#--- constructor of the Embed class ---
|
8 |
def __init__(self, system=None, cluster=None): |
9 |
super(Embed, self).__init__() |
10 |
# define the atom map
|
11 |
self.atom_map_sys_cl = []
|
12 |
self.linkatoms = []
|
13 |
# cluster dimensions
|
14 |
self.xyz_cl_min = None |
15 |
self.xyz_cl_max = None |
16 |
# set the search radius for link atoms
|
17 |
self.d = 10 |
18 |
# define the systems for calculations
|
19 |
self.set_system(system)
|
20 |
self.set_cluster(cluster)
|
21 |
#
|
22 |
self.set_cell([10, 10, 10]) |
23 |
return
|
24 |
|
25 |
#--- set the cluster ---
|
26 |
def set_cluster(self, atoms): |
27 |
import copy |
28 |
# set the min/max cluster dimensions
|
29 |
self.xyz_cl_min = atoms[0].get_position() |
30 |
self.xyz_cl_max = atoms[0].get_position() |
31 |
for atom in atoms: |
32 |
# assign the label "Cluster (10)" in atom.TAG
|
33 |
atom.set_tag(10)
|
34 |
xyz=atom.get_position() |
35 |
for i in xrange(3): |
36 |
# set the min/max cluster dimensions
|
37 |
if xyz[i] < self.xyz_cl_min[i]: |
38 |
self.xyz_cl_min[i] = xyz[i]
|
39 |
if xyz[i] > self.xyz_cl_max[i]: |
40 |
self.xyz_cl_max[i] = xyz[i]
|
41 |
|
42 |
# add self.d around min/max cluster dimensions
|
43 |
self.xyz_cl_min -= [self.d, self.d, self.d] |
44 |
self.xyz_cl_max += [self.d, self.d, self.d] |
45 |
# set the cluster for low and high level calculation
|
46 |
self.atoms_cluster = atoms
|
47 |
return
|
48 |
|
49 |
#--- set the system ---
|
50 |
def set_system(self, atoms): |
51 |
self.atoms_system = atoms
|
52 |
# assign the label "Cluster (10)" in atom.TAG
|
53 |
for atom in atoms: |
54 |
atom.set_tag(0)
|
55 |
# update search radius for link atoms
|
56 |
dx = 0
|
57 |
for atom in atoms: |
58 |
r = covalent_radii[atom.get_atomic_number()] |
59 |
if (r > dx):
|
60 |
dx = r |
61 |
self.d = dx * 2.1 |
62 |
return
|
63 |
|
64 |
#--- return cluster ---
|
65 |
def get_cluster(self): |
66 |
return self.atoms_cluster |
67 |
|
68 |
def get_system(self): |
69 |
return self.atoms_system |
70 |
|
71 |
#--- Embedding ---
|
72 |
def embed(self): |
73 |
# is the cluster and the host system definied ?
|
74 |
if self.atoms_cluster is None or self.atoms_system is None: |
75 |
return
|
76 |
self.find_cluster()
|
77 |
self.set_linkatoms()
|
78 |
print "link atoms found: ", len(self.linkatoms) |
79 |
|
80 |
def find_cluster(self): |
81 |
# set tolerance
|
82 |
d = 0.001
|
83 |
#atoms
|
84 |
xyzs_cl=[] |
85 |
for atom_cl in self.atoms_cluster: |
86 |
xyzs_cl.append(atom_cl.get_position()) |
87 |
xyzs_sys=[] |
88 |
for atom_sys in self.atoms_system: |
89 |
xyzs_sys.append(atom_sys.get_position()) |
90 |
|
91 |
self.atom_map_sys_cl=np.zeros(len(self.atoms_system), int) |
92 |
# loop over cluster atoms atom_sys
|
93 |
for iat_sys in xrange(len(self.atoms_system)): |
94 |
# get the coordinates of the system atom atom_sys
|
95 |
xyz_sys = xyzs_sys[iat_sys] |
96 |
# bSysOnly: no identical atom has been found
|
97 |
bSysOnly = True
|
98 |
# loop over system atoms atom_cl
|
99 |
for iat_cl in xrange(len(self.atoms_cluster)): |
100 |
# difference vector between both atoms
|
101 |
xyz_diff = np.abs(xyzs_sys[iat_sys]-xyzs_cl[iat_cl]) |
102 |
# identical atoms
|
103 |
if xyz_diff[0] < d and xyz_diff[1] < d and xyz_diff[2] < d: |
104 |
# set tag (CLUSTER+HOST: 10) to atom_sys
|
105 |
self.atoms_system[iat_sys].set_tag(10) |
106 |
# map the atom in the atom list
|
107 |
self.atom_map_sys_cl[iat_sys]=iat_cl
|
108 |
# atom has been identified
|
109 |
bSysOnly = False
|
110 |
break
|
111 |
if bSysOnly:
|
112 |
self.atom_map_sys_cl[iat_sys] = -1 |
113 |
|
114 |
def set_linkatoms(self, tol=15., linkAtom=None, debug=False): |
115 |
# local copies of xyz coordinates to avoid massive copying of xyz objects
|
116 |
xyzs_cl=[] |
117 |
for atom_cl in self.atoms_cluster: |
118 |
xyzs_cl.append(atom_cl.get_position()) |
119 |
xyzs_sys=[] |
120 |
for atom_sys in self.atoms_system: |
121 |
xyzs_sys.append(atom_sys.get_position()) |
122 |
# FIXME: mapping does not work when cluster atoms are outside of the box
|
123 |
# set the standard link atom
|
124 |
if linkAtom is None: |
125 |
linkAtom ='H'
|
126 |
# number of atoms in the cluster and the system
|
127 |
nat_cl=len(self.atoms_cluster) |
128 |
nat_sys=len(self.atoms_system) |
129 |
# system has pbc?
|
130 |
pbc = self.get_pbc()
|
131 |
# set the bond table
|
132 |
bonds = [] |
133 |
# set the 27 cell_vec, starting with the (0,0,0) vector for the unit cell
|
134 |
cells_L = [(0.0, 0.0, 0.0)] |
135 |
# get the cell vectors
|
136 |
cell = self.get_cell()
|
137 |
# TODO: check 0D, 1D, 2D, 3D
|
138 |
if False: |
139 |
for ix in xrange(-1, 2): |
140 |
for iy in xrange(-1, 2): |
141 |
for iz in xrange(-1, 2): |
142 |
if ix == 0 and iy == 0 and iz == 0: |
143 |
continue
|
144 |
|
145 |
cells_L.append(np.dot([ix, iy, iz], cell)) |
146 |
# save the radius of system atoms
|
147 |
rs_sys = [] |
148 |
for atom in self.atoms_system: |
149 |
rs_sys.append(covalent_radii[atom.get_atomic_number()]) |
150 |
# sum over cluster atoms (iat_cl)
|
151 |
for iat_cl in xrange(nat_cl): |
152 |
# get the cluster atom
|
153 |
atom_cl=self.atoms_cluster[iat_cl]
|
154 |
# ignore link atoms
|
155 |
if atom_cl.get_tag() == 50: |
156 |
continue
|
157 |
# xyz coordinates and covalent radius of the cluster atom iat_cl
|
158 |
xyz_cl = xyzs_cl[iat_cl] |
159 |
r_cl = covalent_radii[atom_cl.get_atomic_number()] |
160 |
|
161 |
# sum over system atoms (iat_sys)
|
162 |
for iat_sys in xrange(nat_sys): |
163 |
# avoid cluster atoms
|
164 |
if self.atoms_system[iat_sys].get_tag()==10: |
165 |
continue
|
166 |
# sum over all cell_L
|
167 |
for cell_L in cells_L: |
168 |
# xyz coordinates and covalent radius of the system atom iat_sys
|
169 |
xyz_sys = xyzs_sys[iat_sys]+cell_L |
170 |
# go only in distance self.d around the cluster
|
171 |
lcont = True
|
172 |
for i in xrange(3): |
173 |
if (xyz_sys[i] < self.xyz_cl_min[i] or |
174 |
xyz_sys[i] > self.xyz_cl_max[i]):
|
175 |
lcont = False
|
176 |
break
|
177 |
if not lcont: |
178 |
continue
|
179 |
# xyz coordinates and covalent radius of the system atom iat_sys
|
180 |
r_sys = rs_sys[iat_sys] |
181 |
# diff vector
|
182 |
xyz_diff = xyz_sys - xyz_cl |
183 |
# distance between the atoms
|
184 |
r = np.sqrt(np.dot(xyz_diff, xyz_diff)) |
185 |
# ratio of the distance to the sum of covalent radius
|
186 |
f = r / (r_cl + r_sys) |
187 |
if debug:
|
188 |
print "Covalent radii = ",r_cl, r_sys |
189 |
print "Distance ", f |
190 |
print "tol = ",(1+tol/100.),(1-tol/100.),(1-2*tol/100.) |
191 |
if f <= (1+tol/100.) and f >= (1-2*tol/100.): |
192 |
s = cell_L, iat_cl, iat_sys, r_cl |
193 |
bonds.append(s) |
194 |
break
|
195 |
if f <= (1-2*tol/100.): |
196 |
raise RuntimeError("QMX: The cluster atom", iat_cl, " and the system atom", iat_sys, "came too close") |
197 |
|
198 |
r_h = covalent_radii[atomic_numbers[linkAtom]] |
199 |
for bond in bonds: |
200 |
cell_L, iat_cl, iat_sys, r_cl = bond |
201 |
# assign the tags for the border atoms
|
202 |
atom_sys.set_tag(1)
|
203 |
atom_cl.set_tag(11)
|
204 |
#difference vector for the link atom, scaling
|
205 |
xyz_diff = xyzs_sys[iat_sys] + cell_L - xyzs_cl[iat_cl] |
206 |
r = (r_cl + r_h) |
207 |
xyz_diff *= r / np.sqrt(np.dot(xyz_diff, xyz_diff)) |
208 |
# determine position of the link atom
|
209 |
xyz_diff += xyzs_cl[iat_cl] |
210 |
# create link atom
|
211 |
atom = Atom(symbol=linkAtom, position=xyz_diff, tag=50)
|
212 |
# add atom to cluster
|
213 |
self.atoms_cluster.append(atom)
|
214 |
# add atom to the linkatoms
|
215 |
s = cell_L, iat_cl, iat_sys, r, len(self.atoms_cluster)-1 |
216 |
self.linkatoms.append(s)
|
217 |
return
|
218 |
|
219 |
def set_positions(self, positions_new): |
220 |
# number of atoms
|
221 |
nat_sys=len(self.atoms_system) |
222 |
# go over all pairs of atoms
|
223 |
for iat_sys in xrange(nat_sys): |
224 |
xyz = positions_new[iat_sys] |
225 |
iat_cl = self.atom_map_sys_cl[iat_sys]
|
226 |
self.atoms_system[iat_sys].set_position(xyz)
|
227 |
if iat_cl > -1: |
228 |
self.atoms_cluster[iat_cl].set_position(xyz)
|
229 |
|
230 |
for cell_L, iat_cl, iat_sys, r, iat in self.linkatoms: |
231 |
# determine position of the link atom
|
232 |
xyz_cl = self.atoms_cluster[iat_cl].get_position()
|
233 |
xyz = self.atoms_system[iat_sys].get_position() - xyz_cl + cell_L
|
234 |
xyz *= r / np.sqrt(np.dot(xyz, xyz)) |
235 |
xyz += xyz_cl |
236 |
# update xyz coordinates of the cluster
|
237 |
self.atoms_cluster[iat].set_position(xyz)
|
238 |
|
239 |
def __getitem__(self, i): |
240 |
return self.atoms_system.__getitem__(i) |
241 |
|
242 |
def get_positions(self): |
243 |
return self.atoms_system.get_positions() |
244 |
|
245 |
def __add__(self, other): |
246 |
return self.atoms_system.__add__(other) |
247 |
|
248 |
def __delitem__(self, i): |
249 |
return self.atoms_system.__delitem__(i) |
250 |
|
251 |
def __len__(self): |
252 |
return self.atoms_system.__len__() |