root / ase / calculators / qmx.py @ 2
Historique | Voir | Annoter | Télécharger (3,69 ko)
1 |
""" This is a QM:MM embedded system for ASE
|
---|---|
2 |
|
3 |
torsten.kerber@ens-lyon.fr
|
4 |
"""
|
5 |
|
6 |
import ase |
7 |
import ase.atoms |
8 |
import numpy as np |
9 |
from general import Calculator |
10 |
from ase.embed import Embed |
11 |
|
12 |
import sys, os |
13 |
|
14 |
class Qmx(Calculator): |
15 |
def __init__(self, calculator_low, calculator_high): |
16 |
self.string_params = {}
|
17 |
|
18 |
self.forces=np.zeros((2,2)) |
19 |
self._constraints=None |
20 |
|
21 |
self.calculator_low = calculator_low
|
22 |
self.calculator_high = calculator_high
|
23 |
|
24 |
def get_energy_subsystem(self, path, calculator, atoms, force_consistent): |
25 |
os.chdir(path) |
26 |
calculator.set_atoms(atoms) |
27 |
energy = calculator.get_potential_energy(atoms) |
28 |
os.chdir("..")
|
29 |
return energy
|
30 |
|
31 |
def get_forces_subsystem(self, path, calculator, atoms): |
32 |
os.chdir(path) |
33 |
calculator.set_atoms(atoms) |
34 |
forces = calculator.get_forces(atoms) |
35 |
os.chdir("..")
|
36 |
return forces
|
37 |
|
38 |
|
39 |
def get_potential_energy(self, embed, force_consistent=False): |
40 |
# perform energy calculations
|
41 |
e_sys_lo = self.get_energy_subsystem("system.low-level", self.calculator_low, embed.get_system(), force_consistent) |
42 |
e_cl_lo = self.get_energy_subsystem("cluster.low-level", self.calculator_low, embed.get_cluster(), force_consistent) |
43 |
e_cl_hi = self.get_energy_subsystem("cluster.high-level", self.calculator_high, embed.get_cluster(), force_consistent) |
44 |
# calculate energies
|
45 |
energy = e_sys_lo - e_cl_lo + e_cl_hi |
46 |
print "%20s=%15s - %15s + %15s" %("E(C:S)", "E(S-MM)", "E(C-MM)", "E(C-QM)") |
47 |
print "%20f=%15f - %15f + %15f" %(energy, e_sys_lo, e_cl_lo, e_cl_hi) |
48 |
if force_consistent:
|
49 |
self.energy_free = energy
|
50 |
return self.energy_free |
51 |
else:
|
52 |
self.energy_zero = energy
|
53 |
return self.energy_zero |
54 |
|
55 |
def get_forces(self, embed): |
56 |
atom_map_sys_cl = embed.atom_map_sys_cl |
57 |
# get forces for the three systems
|
58 |
f_sys_lo = self.get_forces_subsystem("system.low-level", self.calculator_low, embed.get_system()) |
59 |
f_cl_lo = self.get_forces_subsystem("cluster.low-level", self.calculator_low, embed.get_cluster()) |
60 |
f_cl_hi = self.get_forces_subsystem("cluster.high-level", self.calculator_high, embed.get_cluster()) |
61 |
# forces correction for the atoms
|
62 |
f_cl = f_cl_hi - f_cl_lo |
63 |
#number of atoms
|
64 |
nat_sys = len(embed)
|
65 |
# lo-sys + (hi-lo)
|
66 |
for iat_sys in xrange(nat_sys): |
67 |
iat_cl = atom_map_sys_cl[iat_sys] |
68 |
if iat_cl > -1: |
69 |
f_sys_lo[iat_sys] += f_cl[iat_cl] |
70 |
|
71 |
# correct gradients
|
72 |
# Reference: Eichler, Koelmel, Sauer, J. of Comput. Chem., 18(4). 1997, 463-477.
|
73 |
for cell_L, iat_cl, iat_sys, r, iat_link in embed.linkatoms: |
74 |
# calculate the bond distance (r_bond) at the border
|
75 |
xyz = embed[iat_sys].get_position() - embed.get_cluster()[iat_cl].get_position() + cell_L |
76 |
|
77 |
# calculate the bond lenght and the factor f
|
78 |
rbond = np.sqrt(np.dot(xyz, xyz)) |
79 |
f = r / rbond |
80 |
#normalize xyz
|
81 |
xyz /= rbond |
82 |
|
83 |
# receive the gradients for the link atom
|
84 |
fH = f_cl[iat_link] |
85 |
# Skalarprodukt fH, xyz
|
86 |
fs = np.dot(xyz, fH) |
87 |
|
88 |
for idir in xrange(3): |
89 |
# correct the atom in the system
|
90 |
f_sys_lo[iat_sys][idir] += f*fH[idir] - f*fs*xyz[idir] |
91 |
# correct the atom in the cluster
|
92 |
f_sys_lo[iat_cl][idir] += (1-f)*fH[idir] + f*fs*xyz[idir]
|
93 |
return f_sys_lo
|
94 |
|
95 |
def set_atoms(self, atoms): |
96 |
return
|
97 |
|
98 |
|
99 |
|