root / ase / utils / geometry.py @ 19
Historique | Voir | Annoter | Télécharger (12,3 ko)
1 |
# Copyright (C) 2010, Jesper Friis
|
---|---|
2 |
# (see accompanying license files for details).
|
3 |
|
4 |
"""Utility tools for convenient creation of slabs and interfaces of
|
5 |
different orientations."""
|
6 |
|
7 |
import numpy as np |
8 |
|
9 |
|
10 |
|
11 |
def gcd(seq): |
12 |
"""Returns greatest common divisor of integers in *seq*."""
|
13 |
def _gcd(m, n): |
14 |
while n:
|
15 |
m, n = n, m%n |
16 |
return m
|
17 |
return reduce(_gcd, seq) |
18 |
|
19 |
|
20 |
|
21 |
|
22 |
def get_layers(atoms, miller, tolerance=0.001): |
23 |
"""Returns two arrays describing which layer each atom belongs
|
24 |
to and the distance between the layers and origo.
|
25 |
|
26 |
Parameters:
|
27 |
|
28 |
miller: 3 integers
|
29 |
The Miller indices of the planes. Actually, any direction
|
30 |
in reciprocal space works, so if a and b are two float
|
31 |
vectors spanning an atomic plane, you can get all layers
|
32 |
parallel to this with miller=np.cross(a,b).
|
33 |
tolerance: float
|
34 |
The maximum distance in Angstrom along the plane normal for
|
35 |
counting two atoms as belonging to the same plane.
|
36 |
|
37 |
Returns:
|
38 |
|
39 |
tags: array of integres
|
40 |
Array of layer indices for each atom.
|
41 |
levels: array of floats
|
42 |
Array of distances in Angstrom from each layer to origo.
|
43 |
|
44 |
Example:
|
45 |
|
46 |
>>> import numpy as np
|
47 |
>>> from ase.lattice.spacegroup import crystal
|
48 |
>>> atoms = crystal('Al', [(0,0,0)], spacegroup=225, cellpar=4.05)
|
49 |
>>> np.round(atoms.positions, decimals=5)
|
50 |
array([[ 0. , 0. , 0. ],
|
51 |
[ 0. , 2.025, 2.025],
|
52 |
[ 2.025, 0. , 2.025],
|
53 |
[ 2.025, 2.025, 0. ]])
|
54 |
>>> get_layers(atoms, (0,0,1))
|
55 |
(array([0, 1, 1, 0]), array([ 0. , 2.025]))
|
56 |
"""
|
57 |
miller = np.asarray(miller) |
58 |
|
59 |
metric = np.dot(atoms.cell, atoms.cell.T) |
60 |
c = np.linalg.solve(metric.T, miller.T).T |
61 |
miller_norm = np.sqrt(np.dot(c, miller)) |
62 |
d = np.dot(atoms.get_scaled_positions(), miller)/miller_norm |
63 |
|
64 |
keys = np.argsort(d) |
65 |
ikeys = np.argsort(keys) |
66 |
mask = np.concatenate(([True], np.diff(d[keys]) > tolerance))
|
67 |
tags = np.cumsum(mask)[ikeys] |
68 |
if tags.min() == 1: |
69 |
tags -= 1
|
70 |
|
71 |
levels = d[keys][mask] |
72 |
return tags, levels
|
73 |
|
74 |
|
75 |
|
76 |
|
77 |
def cut(atoms, a=(1,0,0), b=(0,1,0), c=(0,0,1), origo=(0,0,0), |
78 |
nlayers=None, extend=1.0, tolerance=0.001): |
79 |
"""Cuts out a cell defined by *a*, *b*, *c* and *origo* from a
|
80 |
sufficiently repeated copy of *atoms*.
|
81 |
|
82 |
Typically, this function is used to create slabs of different
|
83 |
sizes and orientations. The vectors *a*, *b* and *c* are in scaled
|
84 |
coordinates and defines the returned cell and should normally be
|
85 |
integer-valued in order to end up with a periodic
|
86 |
structure. However, for systems with sub-translations, like fcc,
|
87 |
integer multiples of 1/2 or 1/3 might also make sence for some
|
88 |
directions (and will be treated correctly).
|
89 |
|
90 |
Parameters:
|
91 |
|
92 |
atoms: Atoms instance
|
93 |
This should correspond to a repeatable unit cell.
|
94 |
a: int | 3 floats
|
95 |
The a-vector in scaled coordinates of the cell to cut out. If
|
96 |
integer, the a-vector will be the scaled vector from *origo* to the
|
97 |
atom with index *a*.
|
98 |
b: int | 3 floats
|
99 |
The b-vector in scaled coordinates of the cell to cut out. If
|
100 |
integer, the b-vector will be the scaled vector from *origo* to the
|
101 |
atom with index *b*.
|
102 |
c: int | 3 floats
|
103 |
The c-vector in scaled coordinates of the cell to cut out. If
|
104 |
integer, the c-vector will be the scaled vector from *origo* to the
|
105 |
atom with index *c*. Not used if *nlayers* is given.
|
106 |
origo: int | 3 floats
|
107 |
Position of origo of the new cell in scaled coordinates. If
|
108 |
integer, the position of the atom with index *origo* is used.
|
109 |
nlayers: int
|
110 |
If *nlayers* is not *None*, the returned cell will have
|
111 |
*nlayers* atomic layers in the c-direction. The direction of
|
112 |
the c-vector will be along cross(a, b) converted to real
|
113 |
space, i.e. normal to the plane spanned by a and b in
|
114 |
orthorombic systems.
|
115 |
extend: 1 or 3 floats
|
116 |
The *extend* argument scales the effective cell in which atoms
|
117 |
will be included. It must either be three floats or a single
|
118 |
float scaling all 3 directions. By setting to a value just
|
119 |
above one, e.g. 1.05, it is possible to all the corner and
|
120 |
edge atoms in the returned cell. This will of cause make the
|
121 |
returned cell non-repeatable, but is very usefull for
|
122 |
visualisation.
|
123 |
tolerance: float
|
124 |
Determines what is defined as a plane. All atoms within
|
125 |
*tolerance* Angstroms from a given plane will be considered to
|
126 |
belong to that plane.
|
127 |
|
128 |
Example:
|
129 |
|
130 |
>>> import ase
|
131 |
>>> from ase.lattice.spacegroup import crystal
|
132 |
>>>
|
133 |
# Create an aluminium (111) slab with three layers
|
134 |
#
|
135 |
# First an unit cell of Al
|
136 |
>>> a = 4.05
|
137 |
>>> aluminium = crystal('Al', [(0,0,0)], spacegroup=225,
|
138 |
... cellpar=[a, a, a, 90, 90, 90])
|
139 |
>>>
|
140 |
# Then cut out the slab
|
141 |
>>> al111 = cut(aluminium, (1,-1,0), (0,1,-1), nlayers=3)
|
142 |
>>>
|
143 |
# Visualisation of the skutterudite unit cell
|
144 |
#
|
145 |
# Again, create a skutterudite unit cell
|
146 |
>>> a = 9.04
|
147 |
>>> skutterudite = crystal(
|
148 |
... ('Co', 'Sb'),
|
149 |
... basis=[(0.25,0.25,0.25), (0.0, 0.335, 0.158)],
|
150 |
... spacegroup=204,
|
151 |
... cellpar=[a, a, a, 90, 90, 90])
|
152 |
>>>
|
153 |
# Then use *origo* to put 'Co' at the corners and *extend* to
|
154 |
# include all corner and edge atoms.
|
155 |
>>> s = cut(skutterudite, origo=(0.25, 0.25, 0.25), extend=1.01)
|
156 |
>>> ase.view(s) # doctest: +SKIP
|
157 |
"""
|
158 |
atoms = atoms.copy() |
159 |
cell = atoms.cell |
160 |
|
161 |
if isinstance(origo, int): |
162 |
origo = atoms.get_scaled_positions()[origo] |
163 |
scaled = (atoms.get_scaled_positions() - origo)%1.0
|
164 |
scaled %= 1.0 # needed to ensure that all numbers are *less* than one |
165 |
atoms.set_scaled_positions(scaled) |
166 |
|
167 |
if isinstance(a, int): |
168 |
a = scaled[a] - origo |
169 |
if isinstance(b, int): |
170 |
b = scaled[b] - origo |
171 |
if isinstance(c, int): |
172 |
c = scaled[c] - origo |
173 |
|
174 |
a = np.array(a, dtype=float)
|
175 |
b = np.array(b, dtype=float)
|
176 |
origo = np.array(origo, dtype=float)
|
177 |
|
178 |
if nlayers:
|
179 |
miller = np.cross(a, b) # surface normal
|
180 |
# The factor 36 = 2*2*3*3 is because the elements of a and b
|
181 |
# might be multiples of 1/2 or 1/3 because of lattice
|
182 |
# subtranslations
|
183 |
if np.all(36*miller - np.rint(36*miller)) < 1e-5: |
184 |
miller = np.rint(36*miller)
|
185 |
miller /= gcd(miller) |
186 |
tags, layers = get_layers(atoms, miller, tolerance) |
187 |
while tags.max() < nlayers:
|
188 |
atoms = atoms.repeat(2)
|
189 |
tags, layers = get_layers(atoms, miller, tolerance) |
190 |
# Convert surface normal in reciprocal space to direction in
|
191 |
# real space
|
192 |
metric = np.dot(cell, cell.T) |
193 |
c = np.linalg.solve(metric.T, miller.T).T |
194 |
c *= layers[nlayers]/np.sqrt(np.dot(c, miller)) |
195 |
if np.linalg.det(np.dot(np.array([a, b, c]), cell)) < 0: |
196 |
c *= -1.0
|
197 |
|
198 |
newcell = np.dot(np.array([a, b, c]), cell) |
199 |
|
200 |
# Create a new atoms object, repeated and translated such that
|
201 |
# it completely covers the new cell
|
202 |
scorners_newcell = np.array([[0., 0., 0.], [0., 0., 1.], |
203 |
[0., 1., 0.], [0., 1., 1.], |
204 |
[1., 0., 0.], [1., 0., 1.], |
205 |
[1., 1., 0.], [1., 1., 1.]]) |
206 |
corners = np.dot(scorners_newcell, newcell*extend) |
207 |
scorners = np.linalg.solve(cell.T, corners.T).T |
208 |
rep = np.ceil(scorners.ptp(axis=0)).astype('int') + 1 |
209 |
trans = np.dot(np.floor(scorners.min(axis=0)), cell)
|
210 |
atoms = atoms.repeat(rep) |
211 |
atoms.translate(trans) |
212 |
atoms.set_cell(newcell) |
213 |
|
214 |
# Mask out atoms outside new cell
|
215 |
stol = tolerance # scaled tolerance, XXX
|
216 |
maskcell = atoms.cell*extend |
217 |
sp = np.linalg.solve(maskcell.T, (atoms.positions).T).T |
218 |
mask = np.all(np.logical_and(-stol <= sp, sp < 1-stol), axis=1) |
219 |
atoms = atoms[mask] |
220 |
|
221 |
return atoms
|
222 |
|
223 |
|
224 |
|
225 |
|
226 |
def stack(atoms1, atoms2, axis=2, cell=None, fix=0.5, |
227 |
maxstrain=0.5, distance=None): |
228 |
"""Return a new Atoms instance with *atoms2* added to atoms1
|
229 |
along the given axis. Periodicity in all directions is
|
230 |
ensured.
|
231 |
|
232 |
The size of the final cell is determined by *cell*, except
|
233 |
that the length alongh *axis* will be the sum of
|
234 |
*atoms1.cell[axis]* and *atoms2.cell[axis]*. If *cell* is None,
|
235 |
it will be interpolated between *atoms1* and *atoms2*, where
|
236 |
*fix* determines their relative weight. Hence, if *fix* equals
|
237 |
zero, the final cell will be determined purely from *atoms1* and
|
238 |
if *fix* equals one, it will be determined purely from
|
239 |
*atoms2*.
|
240 |
|
241 |
An ValueError exception will be raised if the far corner of
|
242 |
the unit cell of either *atoms1* or *atoms2* is displaced more
|
243 |
than *maxstrain*. Setting *maxstrain* to None, disable this
|
244 |
check.
|
245 |
|
246 |
If *distance* is provided, the atomic positions in *atoms1* and
|
247 |
*atoms2* as well as the cell lengths along *axis* will be
|
248 |
adjusted such that the distance between the distance between
|
249 |
the closest atoms in *atoms1* and *atoms2* will equal *distance*.
|
250 |
This option uses scipy.optimize.fmin() and hence require scipy
|
251 |
to be installed.
|
252 |
|
253 |
Example:
|
254 |
|
255 |
>>> import ase
|
256 |
>>> from ase.lattice.spacegroup import crystal
|
257 |
>>>
|
258 |
# Create an Ag(110)-Si(110) interface with three atomic layers
|
259 |
# on each side.
|
260 |
>>> a_ag = 4.09
|
261 |
>>> ag = crystal(['Ag'], basis=[(0,0,0)], spacegroup=225,
|
262 |
... cellpar=[a_ag, a_ag, a_ag, 90., 90., 90.])
|
263 |
>>> ag110 = cut(ag, (0, 0, 3), (-1.5, 1.5, 0), nlayers=3)
|
264 |
>>>
|
265 |
>>> a_si = 5.43
|
266 |
>>> si = crystal(['Si'], basis=[(0,0,0)], spacegroup=227,
|
267 |
... cellpar=[a_si, a_si, a_si, 90., 90., 90.])
|
268 |
>>> si110 = cut(si, (0, 0, 2), (-1, 1, 0), nlayers=3)
|
269 |
>>>
|
270 |
>>> interface = stack(ag110, si110, maxstrain=1)
|
271 |
>>> ase.view(interface) # doctest: +SKIP
|
272 |
>>>
|
273 |
# Once more, this time adjusted such that the distance between
|
274 |
# the closest Ag and Si atoms will be 2.3 Angstrom.
|
275 |
>>> interface2 = stack(ag110, si110,
|
276 |
... maxstrain=1, distance=2.3) # doctest:+ELLIPSIS
|
277 |
Optimization terminated successfully.
|
278 |
...
|
279 |
>>> ase.view(interface2) # doctest: +SKIP
|
280 |
"""
|
281 |
atoms1 = atoms1.copy() |
282 |
atoms2 = atoms2.copy() |
283 |
|
284 |
c1 = np.linalg.norm(atoms1.cell[axis]) |
285 |
c2 = np.linalg.norm(atoms2.cell[axis]) |
286 |
if cell is None: |
287 |
cell1 = atoms1.cell.copy() |
288 |
cell2 = atoms2.cell.copy() |
289 |
cell1[axis] /= c1 |
290 |
cell2[axis] /= c2 |
291 |
cell = cell1 + fix*(cell2 - cell1) |
292 |
cell[axis] /= np.linalg.norm(cell[axis]) |
293 |
cell1 = cell.copy() |
294 |
cell2 = cell.copy() |
295 |
cell1[axis] *= c1 |
296 |
cell2[axis] *= c2 |
297 |
|
298 |
if (maxstrain and |
299 |
(((cell1 - atoms1.cell).sum(axis=0)**2).sum() > maxstrain**2 or |
300 |
((cell2 - atoms2.cell).sum(axis=0)**2).sum() > maxstrain**2)): |
301 |
raise ValueError('Incompatible cells.') |
302 |
|
303 |
sp1 = np.linalg.solve(atoms1.cell.T, atoms1.positions.T).T |
304 |
sp2 = np.linalg.solve(atoms2.cell.T, atoms2.positions.T).T |
305 |
atoms1.set_cell(cell1) |
306 |
atoms2.set_cell(cell2) |
307 |
atoms1.set_scaled_positions(sp1) |
308 |
atoms2.set_scaled_positions(sp2) |
309 |
|
310 |
if distance is not None: |
311 |
from scipy.optimize import fmin |
312 |
def mindist(pos1, pos2): |
313 |
n1 = len(pos1)
|
314 |
n2 = len(pos2)
|
315 |
idx1 = np.arange(n1).repeat(n2) |
316 |
idx2 = np.tile(np.arange(n2), n1) |
317 |
return np.sqrt(((pos1[idx1] - pos2[idx2])**2).sum(axis=1).min()) |
318 |
def func(x): |
319 |
t1, t2, h1, h2 = x[0:3], x[3:6], x[6], x[7] |
320 |
pos1 = atoms1.positions + t1 |
321 |
pos2 = atoms2.positions + t2 |
322 |
d1 = mindist(pos1, pos2 + (h1 + 1.0)*atoms1.cell[axis])
|
323 |
d2 = mindist(pos2, pos1 + (h2 + 1.0)*atoms2.cell[axis])
|
324 |
return (d1 - distance)**2 + (d2 - distance)**2 |
325 |
atoms1.center() |
326 |
atoms2.center() |
327 |
x0 = np.zeros((8,))
|
328 |
x = fmin(func, x0) |
329 |
t1, t2, h1, h2 = x[0:3], x[3:6], x[6], x[7] |
330 |
atoms1.translate(t1) |
331 |
atoms2.translate(t2) |
332 |
atoms1.cell[axis] *= 1.0 + h1
|
333 |
atoms2.cell[axis] *= 1.0 + h2
|
334 |
|
335 |
atoms2.translate(atoms1.cell[axis]) |
336 |
atoms1.cell[axis] += atoms2.cell[axis] |
337 |
atoms1.extend(atoms2) |
338 |
return atoms1
|
339 |
|
340 |
|
341 |
#-----------------------------------------------------------------
|
342 |
# Self test
|
343 |
if __name__ == '__main__': |
344 |
import doctest |
345 |
print 'doctest: ', doctest.testmod() |