root / ase / md / md.py @ 19
Historique | Voir | Annoter | Télécharger (1,04 ko)
1 |
"""Molecular Dynamics."""
|
---|---|
2 |
|
3 |
import numpy as np |
4 |
|
5 |
from ase.optimize.optimize import Dynamics |
6 |
from ase.data import atomic_masses |
7 |
from ase.md.logger import MDLogger |
8 |
|
9 |
|
10 |
class MolecularDynamics(Dynamics): |
11 |
"""Base-class for all MD classes."""
|
12 |
def __init__(self, atoms, timestep, trajectory, logfile=None, |
13 |
loginterval=1):
|
14 |
Dynamics.__init__(self, atoms, logfile=None, trajectory=trajectory) |
15 |
self.dt = timestep
|
16 |
self.masses = self.atoms.get_masses() |
17 |
self.masses.shape = (-1, 1) |
18 |
if logfile:
|
19 |
self.attach(MDLogger(dyn=self, atoms=atoms, logfile=logfile), |
20 |
interval=loginterval) |
21 |
|
22 |
def run(self, steps=50): |
23 |
"""Integrate equation of motion."""
|
24 |
f = self.atoms.get_forces()
|
25 |
|
26 |
if not self.atoms.has('momenta'): |
27 |
self.atoms.set_momenta(np.zeros_like(f))
|
28 |
|
29 |
for step in xrange(steps): |
30 |
f = self.step(f)
|
31 |
self.nsteps += 1 |
32 |
self.call_observers()
|
33 |
|
34 |
def get_time(self): |
35 |
return self.nsteps * self.dt |
36 |
|