root / ase / lattice / hexagonal.py @ 19
Historique | Voir | Annoter | Télécharger (3,31 ko)
1 |
"""Function-like object creating hexagonal lattices.
|
---|---|
2 |
|
3 |
The following lattice creators are defined:
|
4 |
Hexagonal
|
5 |
HexagonalClosedPacked
|
6 |
Graphite
|
7 |
"""
|
8 |
|
9 |
from ase.lattice.triclinic import TriclinicFactory |
10 |
import numpy as np |
11 |
from ase.data import reference_states as _refstate |
12 |
|
13 |
|
14 |
class HexagonalFactory(TriclinicFactory): |
15 |
"A factory for creating simple hexagonal lattices."
|
16 |
# The name of the crystal structure in ChemicalElements
|
17 |
xtal_name = "hexagonal"
|
18 |
|
19 |
def make_crystal_basis(self): |
20 |
"Make the basis matrix for the crystal unit cell and the system unit cell."
|
21 |
# First convert the basis specification to a triclinic one
|
22 |
if type(self.latticeconstant) == type({}): |
23 |
self.latticeconstant['alpha'] = 90 |
24 |
self.latticeconstant['beta'] = 90 |
25 |
self.latticeconstant['gamma'] = 120 |
26 |
self.latticeconstant['b/a'] = 1.0 |
27 |
else:
|
28 |
if len(self.latticeconstant) == 2: |
29 |
a,c = self.latticeconstant
|
30 |
self.latticeconstant = (a,a,c,90,90,120) |
31 |
else:
|
32 |
raise ValueError, "Improper lattice constants for hexagonal crystal." |
33 |
TriclinicFactory.make_crystal_basis(self)
|
34 |
|
35 |
def find_directions(self, directions, miller): |
36 |
"""Find missing directions and miller indices from the specified ones.
|
37 |
|
38 |
Also handles the conversion of hexagonal-style 4-index notation to
|
39 |
the normal 3-index notation.
|
40 |
"""
|
41 |
directions = list(directions)
|
42 |
miller = list(miller)
|
43 |
for obj in (directions,miller): |
44 |
for i in range(3): |
45 |
if obj[i] is not None: |
46 |
(a,b,c,d) = obj[i] |
47 |
if a + b + c != 0: |
48 |
raise ValueError( |
49 |
("(%d,%d,%d,%d) is not a valid hexagonal Miller " +
|
50 |
"index, as the sum of the first three numbers " +
|
51 |
"should be zero.") % (a,b,c,d))
|
52 |
x = 4*a + 2*b |
53 |
y = 2*a + 4*b |
54 |
z = 3*d
|
55 |
obj[i] = (x,y,z) |
56 |
TriclinicFactory.find_directions(self, directions, miller)
|
57 |
|
58 |
def print_directions_and_miller(self, txt=""): |
59 |
"Print direction vectors and Miller indices."
|
60 |
print "Direction vectors of unit cell%s:" % (txt,) |
61 |
for i in (0,1,2): |
62 |
self.print_four_vector("[]", self.directions[i]) |
63 |
print "Miller indices of surfaces%s:" % (txt,) |
64 |
for i in (0,1,2): |
65 |
self.print_four_vector("()", self.miller[i]) |
66 |
|
67 |
def print_four_vector(self, bracket, numbers): |
68 |
bra, ket = bracket |
69 |
(x,y,z) = numbers |
70 |
a = 2*x - y
|
71 |
b = -x + 2*y
|
72 |
c = -x -y |
73 |
d = 2*z
|
74 |
print " %s%d, %d, %d%s ~ %s%d, %d, %d, %d%s" % \ |
75 |
(bra,x,y,z,ket, bra,a,b,c,d,ket) |
76 |
|
77 |
|
78 |
Hexagonal = HexagonalFactory() |
79 |
|
80 |
class HexagonalClosedPackedFactory(HexagonalFactory): |
81 |
"A factory for creating HCP lattices."
|
82 |
xtal_name = "hcp"
|
83 |
bravais_basis = [[0,0,0], [1.0/3.0, 2.0/3.0, 0.5]] |
84 |
|
85 |
HexagonalClosedPacked = HexagonalClosedPackedFactory() |
86 |
|
87 |
class GraphiteFactory(HexagonalFactory): |
88 |
"A factory for creating graphite lattices."
|
89 |
xtal_name = "graphite"
|
90 |
bravais_basis = [[0,0,0], [1.0/3.0, 2.0/3.0, 0], [1.0/3.0,2.0/3.0,0.5], [2.0/3.0,1.0/3.0,0.5]] |
91 |
|
92 |
Graphite = GraphiteFactory() |
93 |
|