root / ase / utils / eos.py @ 19
Historique | Voir | Annoter | Télécharger (2,48 ko)
1 | 1 | tkerber | # -*- coding: utf-8 -*-
|
---|---|---|---|
2 | 1 | tkerber | from math import sqrt |
3 | 1 | tkerber | |
4 | 1 | tkerber | import numpy as np |
5 | 1 | tkerber | |
6 | 1 | tkerber | from ase.units import kJ |
7 | 1 | tkerber | |
8 | 1 | tkerber | class EquationOfState: |
9 | 1 | tkerber | """Fit equation of state for bulk systems.
|
10 | 1 | tkerber |
|
11 | 1 | tkerber | The following equation is used::
|
12 | 1 | tkerber |
|
13 | 1 | tkerber | 2 3 -1/3
|
14 | 1 | tkerber | E(V) = c + c t + c t + c t , t = V
|
15 | 1 | tkerber | 0 1 2 3
|
16 | 1 | tkerber |
|
17 | 1 | tkerber | Use::
|
18 | 1 | tkerber |
|
19 | 1 | tkerber | eos = EquationOfState(volumes, energies)
|
20 | 1 | tkerber | v0, e0, B = eos.fit()
|
21 | 1 | tkerber | eos.plot()
|
22 | 1 | tkerber |
|
23 | 1 | tkerber | """
|
24 | 1 | tkerber | def __init__(self, volumes, energies): |
25 | 1 | tkerber | self.v = np.array(volumes)
|
26 | 1 | tkerber | self.e = np.array(energies)
|
27 | 1 | tkerber | self.v0 = None |
28 | 1 | tkerber | |
29 | 1 | tkerber | def fit(self): |
30 | 1 | tkerber | """Calculate volume, energy, and bulk modulus.
|
31 | 1 | tkerber |
|
32 | 1 | tkerber | Returns the optimal volume, the minumum energy, and the bulk
|
33 | 1 | tkerber | modulus. Notice that the ASE units for the bulk modulus is
|
34 | 1 | tkerber | eV/Angstrom^3 - to get the value in GPa, do this::
|
35 | 1 | tkerber |
|
36 | 1 | tkerber | v0, e0, B = eos.fit()
|
37 | 1 | tkerber | print B / kJ * 1.0e24, 'GPa'
|
38 | 1 | tkerber |
|
39 | 1 | tkerber | """
|
40 | 1 | tkerber | |
41 | 1 | tkerber | fit0 = np.poly1d(np.polyfit(self.v**-(1.0 / 3), self.e, 3)) |
42 | 1 | tkerber | fit1 = np.polyder(fit0, 1)
|
43 | 1 | tkerber | fit2 = np.polyder(fit1, 1)
|
44 | 1 | tkerber | |
45 | 1 | tkerber | self.v0 = None |
46 | 1 | tkerber | for t in np.roots(fit1): |
47 | 1 | tkerber | if t > 0 and fit2(t) > 0: |
48 | 1 | tkerber | self.v0 = t**-3 |
49 | 1 | tkerber | break
|
50 | 1 | tkerber | |
51 | 1 | tkerber | if self.v0 is None: |
52 | 1 | tkerber | raise ValueError('No minimum!') |
53 | 1 | tkerber | |
54 | 1 | tkerber | self.e0 = fit0(t)
|
55 | 1 | tkerber | self.B = t**5 * fit2(t) / 9 |
56 | 1 | tkerber | self.fit0 = fit0
|
57 | 1 | tkerber | |
58 | 1 | tkerber | return self.v0, self.e0, self.B |
59 | 1 | tkerber | |
60 | 1 | tkerber | def plot(self, filename=None, show=None): |
61 | 1 | tkerber | """Plot fitted energy curve.
|
62 | 1 | tkerber |
|
63 | 1 | tkerber | Uses Matplotlib to plot the energy curve. Use *show=True* to
|
64 | 1 | tkerber | show the figure and *filename='abc.png'* or
|
65 | 1 | tkerber | *filename='abc.eps'* to save the figure to a file."""
|
66 | 1 | tkerber | |
67 | 1 | tkerber | #import matplotlib.pyplot as plt
|
68 | 1 | tkerber | import pylab as plt |
69 | 1 | tkerber | |
70 | 1 | tkerber | if self.v0 is None: |
71 | 1 | tkerber | self.fit()
|
72 | 1 | tkerber | |
73 | 1 | tkerber | if filename is None and show is None: |
74 | 1 | tkerber | show = True
|
75 | 1 | tkerber | |
76 | 1 | tkerber | x = 3.95
|
77 | 1 | tkerber | f = plt.figure(figsize=(x * 2.5**0.5, x)) |
78 | 1 | tkerber | f.subplots_adjust(left=0.12, right=0.9, top=0.9, bottom=0.15) |
79 | 1 | tkerber | plt.plot(self.v, self.e, 'o') |
80 | 1 | tkerber | x = np.linspace(min(self.v), max(self.v), 100) |
81 | 1 | tkerber | plt.plot(x, self.fit0(x**-(1.0 / 3)), '-r') |
82 | 1 | tkerber | plt.xlabel(u'volume [Å^3]')
|
83 | 1 | tkerber | plt.ylabel(u'energy [eV]')
|
84 | 1 | tkerber | plt.title(u'E: %.3f eV, V: %.3f Å^3, B: %.3f GPa' %
|
85 | 1 | tkerber | (self.e0, self.v0, self.B / kJ * 1.0e24)) |
86 | 1 | tkerber | |
87 | 1 | tkerber | if show:
|
88 | 1 | tkerber | plt.show() |
89 | 1 | tkerber | if filename is not None: |
90 | 1 | tkerber | f.savefig(filename) |
91 | 1 | tkerber | |
92 | 1 | tkerber | return f |