root / ase / lattice / bravais.py @ 19
Historique | Voir | Annoter | Télécharger (18,3 ko)
1 | 1 | tkerber | """Bravais.py - class for generating Bravais lattices etc.
|
---|---|---|---|
2 | 1 | tkerber |
|
3 | 1 | tkerber | This is a base class for numerous classes setting up pieces of crystal.
|
4 | 1 | tkerber | """
|
5 | 1 | tkerber | |
6 | 1 | tkerber | import math |
7 | 1 | tkerber | import numpy as np |
8 | 1 | tkerber | from ase.atoms import Atoms |
9 | 1 | tkerber | import ase.data |
10 | 1 | tkerber | |
11 | 1 | tkerber | class Bravais: |
12 | 1 | tkerber | """Bravais lattice factory.
|
13 | 1 | tkerber |
|
14 | 1 | tkerber | This is a base class for the objects producing various lattices
|
15 | 1 | tkerber | (SC, FCC, ...).
|
16 | 1 | tkerber | """
|
17 | 1 | tkerber | |
18 | 1 | tkerber | # The following methods are NOT defined here, but must be defined
|
19 | 1 | tkerber | # in classes inhering from Bravais:
|
20 | 1 | tkerber | # get_lattice_constant
|
21 | 1 | tkerber | # make_crystal_basis
|
22 | 1 | tkerber | # The following class attributes are NOT defined here, but must be defined
|
23 | 1 | tkerber | # in classes inhering from Bravais:
|
24 | 1 | tkerber | # int_basis
|
25 | 1 | tkerber | # inverse_basis
|
26 | 1 | tkerber | |
27 | 1 | tkerber | other = {0:(1,2), 1:(2,0), 2:(0,1)} |
28 | 1 | tkerber | |
29 | 1 | tkerber | # For Bravais lattices with a basis, set the basis here. Leave as
|
30 | 1 | tkerber | # None if no basis is present.
|
31 | 1 | tkerber | bravais_basis = None
|
32 | 1 | tkerber | |
33 | 1 | tkerber | # If more than one type of element appear in the crystal, give the
|
34 | 1 | tkerber | # order here. For example, if two elements appear in a 3:1 ratio,
|
35 | 1 | tkerber | # bravais_basis could contain four vectors, and element_basis
|
36 | 1 | tkerber | # could be (0,0,1,0) - the third atom in the basis is different
|
37 | 1 | tkerber | # from the other three. Leave as None if all atoms are of the
|
38 | 1 | tkerber | # same type.
|
39 | 1 | tkerber | element_basis = None
|
40 | 1 | tkerber | |
41 | 1 | tkerber | # How small numbers should be considered zero in the unit cell?
|
42 | 1 | tkerber | chop_tolerance = 1e-10
|
43 | 1 | tkerber | |
44 | 1 | tkerber | def __call__(self, symbol, |
45 | 1 | tkerber | directions=(None,None,None), miller=(None,None,None), |
46 | 1 | tkerber | size=(1,1,1), latticeconstant=None, |
47 | 1 | tkerber | pbc=True, align=True, debug=0): |
48 | 1 | tkerber | "Create a lattice."
|
49 | 1 | tkerber | self.size = size
|
50 | 1 | tkerber | self.pbc = pbc
|
51 | 1 | tkerber | self.debug = debug
|
52 | 1 | tkerber | self.process_element(symbol)
|
53 | 1 | tkerber | self.find_directions(directions, miller)
|
54 | 1 | tkerber | if self.debug: |
55 | 1 | tkerber | self.print_directions_and_miller()
|
56 | 1 | tkerber | self.convert_to_natural_basis()
|
57 | 1 | tkerber | if self.debug >= 2: |
58 | 1 | tkerber | self.print_directions_and_miller(" (natural basis)") |
59 | 1 | tkerber | if latticeconstant is None: |
60 | 1 | tkerber | if self.element_basis is None: |
61 | 1 | tkerber | self.latticeconstant = self.get_lattice_constant() |
62 | 1 | tkerber | else:
|
63 | 1 | tkerber | raise ValueError,\ |
64 | 1 | tkerber | "A lattice constant must be specified for a compound"
|
65 | 1 | tkerber | else:
|
66 | 1 | tkerber | self.latticeconstant = latticeconstant
|
67 | 1 | tkerber | if self.debug: |
68 | 1 | tkerber | print "Expected number of atoms in unit cell:", self.calc_num_atoms() |
69 | 1 | tkerber | if self.debug >= 2: |
70 | 1 | tkerber | print "Bravais lattice basis:", self.bravais_basis |
71 | 1 | tkerber | if self.bravais_basis is not None: |
72 | 1 | tkerber | print " ... in natural basis:", self.natural_bravais_basis |
73 | 1 | tkerber | self.make_crystal_basis()
|
74 | 1 | tkerber | self.make_unit_cell()
|
75 | 1 | tkerber | if align:
|
76 | 1 | tkerber | self.align()
|
77 | 1 | tkerber | return self.make_list_of_atoms() |
78 | 1 | tkerber | |
79 | 1 | tkerber | def align(self): |
80 | 1 | tkerber | "Align the first axis along x-axis and the second in the x-y plane."
|
81 | 1 | tkerber | degree = 180/np.pi
|
82 | 1 | tkerber | if self.debug >= 2: |
83 | 1 | tkerber | print "Basis before alignment:" |
84 | 1 | tkerber | print self.basis |
85 | 1 | tkerber | if self.basis[0][0]**2 + self.basis[0][2]**2 < 0.01 * self.basis[0][1]**2: |
86 | 1 | tkerber | # First basis vector along y axis - rotate 90 deg along z
|
87 | 1 | tkerber | t = np.array([[0, -1, 0], |
88 | 1 | tkerber | [1, 0, 0], |
89 | 1 | tkerber | [0, 0, 1]], np.float) |
90 | 1 | tkerber | self.basis = np.dot(self.basis, t) |
91 | 1 | tkerber | transf = t |
92 | 1 | tkerber | if self.debug >= 2: |
93 | 1 | tkerber | print "Rotating -90 degrees around z axis for numerical stability." |
94 | 1 | tkerber | print self.basis |
95 | 1 | tkerber | else:
|
96 | 1 | tkerber | transf = np.identity(3, np.float)
|
97 | 1 | tkerber | assert abs(np.linalg.det(transf) - 1) < 1e-6 |
98 | 1 | tkerber | # Rotate first basis vector into xy plane
|
99 | 1 | tkerber | theta = math.atan2(self.basis[0,2], self.basis[0,0]) |
100 | 1 | tkerber | t = np.array([[np.cos(theta), 0, -np.sin(theta)],
|
101 | 1 | tkerber | [ 0, 1, 0 ], |
102 | 1 | tkerber | [np.sin(theta), 0, np.cos(theta) ]])
|
103 | 1 | tkerber | self.basis = np.dot(self.basis, t) |
104 | 1 | tkerber | transf = np.dot(transf, t) |
105 | 1 | tkerber | if self.debug >= 2: |
106 | 1 | tkerber | print "Rotating %f degrees around y axis." % (-theta*degree,) |
107 | 1 | tkerber | print self.basis |
108 | 1 | tkerber | assert abs(np.linalg.det(transf) - 1) < 1e-6 |
109 | 1 | tkerber | # Rotate first basis vector to point along x axis
|
110 | 1 | tkerber | theta = math.atan2(self.basis[0,1], self.basis[0,0]) |
111 | 1 | tkerber | t = np.array([[np.cos(theta), -np.sin(theta), 0],
|
112 | 1 | tkerber | [np.sin(theta), np.cos(theta), 0],
|
113 | 1 | tkerber | [ 0, 0, 1]]) |
114 | 1 | tkerber | self.basis = np.dot(self.basis, t) |
115 | 1 | tkerber | transf = np.dot(transf, t) |
116 | 1 | tkerber | if self.debug >= 2: |
117 | 1 | tkerber | print "Rotating %f degrees around z axis." % (-theta*degree,) |
118 | 1 | tkerber | print self.basis |
119 | 1 | tkerber | assert abs(np.linalg.det(transf) - 1) < 1e-6 |
120 | 1 | tkerber | # Rotate second basis vector into xy plane
|
121 | 1 | tkerber | theta = math.atan2(self.basis[1,2], self.basis[1,1]) |
122 | 1 | tkerber | t = np.array([[1, 0, 0], |
123 | 1 | tkerber | [0, np.cos(theta), -np.sin(theta)],
|
124 | 1 | tkerber | [0, np.sin(theta), np.cos(theta)]])
|
125 | 1 | tkerber | self.basis = np.dot(self.basis, t) |
126 | 1 | tkerber | transf = np.dot(transf, t) |
127 | 1 | tkerber | if self.debug >= 2: |
128 | 1 | tkerber | print "Rotating %f degrees around x axis." % (-theta*degree,) |
129 | 1 | tkerber | print self.basis |
130 | 1 | tkerber | assert abs(np.linalg.det(transf) - 1) < 1e-6 |
131 | 1 | tkerber | # Now we better rotate the atoms as well
|
132 | 1 | tkerber | self.atoms = np.dot(self.atoms, transf) |
133 | 1 | tkerber | # ... and rotate miller_basis
|
134 | 1 | tkerber | self.miller_basis = np.dot(self.miller_basis, transf) |
135 | 1 | tkerber | |
136 | 1 | tkerber | def make_list_of_atoms(self): |
137 | 1 | tkerber | "Repeat the unit cell."
|
138 | 1 | tkerber | nrep = self.size[0] * self.size[1] * self.size[2] |
139 | 1 | tkerber | if nrep <= 0: |
140 | 1 | tkerber | raise ValueError, "Cannot create a non-positive number of unit cells" |
141 | 1 | tkerber | # Now the unit cells must be merged.
|
142 | 1 | tkerber | a2 = [] |
143 | 1 | tkerber | e2 = [] |
144 | 1 | tkerber | for i in xrange(self.size[0]): |
145 | 1 | tkerber | offset = self.basis[0] * i |
146 | 1 | tkerber | a2.append(self.atoms + offset[np.newaxis,:])
|
147 | 1 | tkerber | e2.append(self.elements)
|
148 | 1 | tkerber | atoms = np.concatenate(a2) |
149 | 1 | tkerber | elements = np.concatenate(e2) |
150 | 1 | tkerber | a2 = [] |
151 | 1 | tkerber | e2 = [] |
152 | 1 | tkerber | for j in xrange(self.size[1]): |
153 | 1 | tkerber | offset = self.basis[1] * j |
154 | 1 | tkerber | a2.append(atoms + offset[np.newaxis,:]) |
155 | 1 | tkerber | e2.append(elements) |
156 | 1 | tkerber | atoms = np.concatenate(a2) |
157 | 1 | tkerber | elements = np.concatenate(e2) |
158 | 1 | tkerber | a2 = [] |
159 | 1 | tkerber | e2 = [] |
160 | 1 | tkerber | for k in xrange(self.size[2]): |
161 | 1 | tkerber | offset = self.basis[2] * k |
162 | 1 | tkerber | a2.append(atoms + offset[np.newaxis,:]) |
163 | 1 | tkerber | e2.append(elements) |
164 | 1 | tkerber | atoms = np.concatenate(a2) |
165 | 1 | tkerber | elements = np.concatenate(e2) |
166 | 1 | tkerber | del a2, e2
|
167 | 1 | tkerber | assert len(atoms) == nrep * len(self.atoms) |
168 | 1 | tkerber | basis = np.array([[self.size[0],0,0], |
169 | 1 | tkerber | [0,self.size[1],0], |
170 | 1 | tkerber | [0,0,self.size[2]]]) |
171 | 1 | tkerber | basis = np.dot(basis, self.basis)
|
172 | 1 | tkerber | |
173 | 1 | tkerber | # Tiny elements should be replaced by zero. The cutoff is
|
174 | 1 | tkerber | # determined by chop_tolerance which is a class attribute.
|
175 | 1 | tkerber | basis = np.where(np.abs(basis) < self.chop_tolerance,
|
176 | 1 | tkerber | 0.0, basis)
|
177 | 1 | tkerber | |
178 | 1 | tkerber | # None should be replaced, and memory should be freed.
|
179 | 1 | tkerber | lattice = Lattice(positions=atoms, cell=basis, numbers=elements, |
180 | 1 | tkerber | pbc=self.pbc)
|
181 | 1 | tkerber | lattice.millerbasis = self.miller_basis
|
182 | 1 | tkerber | # Add info for lattice.surface.AddAdsorbate
|
183 | 1 | tkerber | lattice._addsorbate_info_size = np.array(self.size[:2]) |
184 | 1 | tkerber | return lattice
|
185 | 1 | tkerber | |
186 | 1 | tkerber | def process_element(self, element): |
187 | 1 | tkerber | "Extract atomic number from element"
|
188 | 1 | tkerber | # The types that can be elements: integers and strings
|
189 | 1 | tkerber | if self.element_basis is None: |
190 | 1 | tkerber | if isinstance(element, type("string")): |
191 | 1 | tkerber | self.atomicnumber = ase.data.atomic_numbers[element]
|
192 | 1 | tkerber | elif isinstance(element, int): |
193 | 1 | tkerber | self.atomicnumber = element
|
194 | 1 | tkerber | else:
|
195 | 1 | tkerber | raise TypeError("The symbol argument must be a string or an atomic number.") |
196 | 1 | tkerber | else:
|
197 | 1 | tkerber | atomicnumber = [] |
198 | 1 | tkerber | try:
|
199 | 1 | tkerber | if len(element) != max(self.element_basis) + 1: |
200 | 1 | tkerber | oops = True
|
201 | 1 | tkerber | else:
|
202 | 1 | tkerber | oops = False
|
203 | 1 | tkerber | except TypeError: |
204 | 1 | tkerber | oops = True
|
205 | 1 | tkerber | if oops:
|
206 | 1 | tkerber | raise TypeError( |
207 | 1 | tkerber | ("The symbol argument must be a sequence of length %d"
|
208 | 1 | tkerber | +" (one for each kind of lattice position")
|
209 | 1 | tkerber | % (max(self.element_basis)+1,)) |
210 | 1 | tkerber | for e in element: |
211 | 1 | tkerber | if isinstance(e, type("string")): |
212 | 1 | tkerber | atomicnumber.append(ase.data.atomic_numbers[e]) |
213 | 1 | tkerber | elif isinstance(element, int): |
214 | 1 | tkerber | atomicnumber.append(e) |
215 | 1 | tkerber | else:
|
216 | 1 | tkerber | raise TypeError("The symbols argument must be a sequence of strings or atomic numbers.") |
217 | 1 | tkerber | self.atomicnumber = [atomicnumber[i] for i in self.element_basis] |
218 | 1 | tkerber | assert len(self.atomicnumber) == len(self.bravais_basis) |
219 | 1 | tkerber | |
220 | 1 | tkerber | def convert_to_natural_basis(self): |
221 | 1 | tkerber | "Convert directions and miller indices to the natural basis."
|
222 | 1 | tkerber | self.directions = np.dot(self.directions, self.inverse_basis) |
223 | 1 | tkerber | if self.bravais_basis is not None: |
224 | 1 | tkerber | self.natural_bravais_basis = np.dot(self.bravais_basis, |
225 | 1 | tkerber | self.inverse_basis)
|
226 | 1 | tkerber | for i in (0,1,2): |
227 | 1 | tkerber | self.directions[i] = reduceindex(self.directions[i]) |
228 | 1 | tkerber | for i in (0,1,2): |
229 | 1 | tkerber | (j,k) = self.other[i]
|
230 | 1 | tkerber | self.miller[i] = reduceindex(self.handedness * |
231 | 1 | tkerber | cross(self.directions[j],
|
232 | 1 | tkerber | self.directions[k]))
|
233 | 1 | tkerber | |
234 | 1 | tkerber | def calc_num_atoms(self): |
235 | 1 | tkerber | v = int(round(abs(np.linalg.det(self.directions)))) |
236 | 1 | tkerber | if self.bravais_basis is None: |
237 | 1 | tkerber | return v
|
238 | 1 | tkerber | else:
|
239 | 1 | tkerber | return v * len(self.bravais_basis) |
240 | 1 | tkerber | |
241 | 1 | tkerber | def make_unit_cell(self): |
242 | 1 | tkerber | "Make the unit cell."
|
243 | 1 | tkerber | # Make three loops, and find the positions in the integral
|
244 | 1 | tkerber | # lattice. Each time a position is found, the atom is placed
|
245 | 1 | tkerber | # in the real unit cell by put_atom().
|
246 | 1 | tkerber | self.natoms = self.calc_num_atoms() |
247 | 1 | tkerber | self.nput = 0 |
248 | 1 | tkerber | self.atoms = np.zeros((self.natoms,3), np.float) |
249 | 1 | tkerber | self.elements = np.zeros(self.natoms, np.int) |
250 | 1 | tkerber | self.farpoint = farpoint = sum(self.directions) |
251 | 1 | tkerber | #printprogress = self.debug and (len(self.atoms) > 250)
|
252 | 1 | tkerber | percent = 0
|
253 | 1 | tkerber | # Find the radius of the sphere containing the whole system
|
254 | 1 | tkerber | sqrad = 0
|
255 | 1 | tkerber | for i in (0,1): |
256 | 1 | tkerber | for j in (0,1): |
257 | 1 | tkerber | for k in (0,1): |
258 | 1 | tkerber | vect = (i * self.directions[0] + |
259 | 1 | tkerber | j * self.directions[1] + |
260 | 1 | tkerber | k * self.directions[2]) |
261 | 1 | tkerber | if np.dot(vect,vect) > sqrad:
|
262 | 1 | tkerber | sqrad = np.dot(vect,vect) |
263 | 1 | tkerber | del i,j,k
|
264 | 1 | tkerber | # Loop along first crystal axis (i)
|
265 | 1 | tkerber | for (istart, istep) in ((0,1), (-1,-1)): |
266 | 1 | tkerber | i = istart |
267 | 1 | tkerber | icont = True
|
268 | 1 | tkerber | while icont:
|
269 | 1 | tkerber | nj = 0
|
270 | 1 | tkerber | for (jstart, jstep) in ((0,1), (-1,-1)): |
271 | 1 | tkerber | j = jstart |
272 | 1 | tkerber | jcont = True
|
273 | 1 | tkerber | while jcont:
|
274 | 1 | tkerber | nk = 0
|
275 | 1 | tkerber | for (kstart, kstep) in ((0,1), (-1,-1)): |
276 | 1 | tkerber | k = kstart |
277 | 1 | tkerber | #print "Starting line i=%d, j=%d, k=%d, step=(%d,%d,%d)" % (i,j,k,istep,jstep,kstep)
|
278 | 1 | tkerber | kcont = True
|
279 | 1 | tkerber | while kcont:
|
280 | 1 | tkerber | # Now (i,j,k) loops over Z^3, except that
|
281 | 1 | tkerber | # the loops can be cut off when we get outside
|
282 | 1 | tkerber | # the unit cell.
|
283 | 1 | tkerber | point = np.array((i,j,k)) |
284 | 1 | tkerber | if self.inside(point): |
285 | 1 | tkerber | self.put_atom(point)
|
286 | 1 | tkerber | nk += 1
|
287 | 1 | tkerber | nj += 1
|
288 | 1 | tkerber | # Is k too high?
|
289 | 1 | tkerber | if np.dot(point,point) > sqrad:
|
290 | 1 | tkerber | assert not self.inside(point) |
291 | 1 | tkerber | kcont = False
|
292 | 1 | tkerber | k += kstep |
293 | 1 | tkerber | # Is j too high?
|
294 | 1 | tkerber | if i*i+j*j > sqrad:
|
295 | 1 | tkerber | jcont = False
|
296 | 1 | tkerber | j += jstep |
297 | 1 | tkerber | # Is i too high?
|
298 | 1 | tkerber | if i*i > sqrad:
|
299 | 1 | tkerber | icont = False
|
300 | 1 | tkerber | i += istep |
301 | 1 | tkerber | #if printprogress:
|
302 | 1 | tkerber | # perce = int(100*self.nput / len(self.atoms))
|
303 | 1 | tkerber | # if perce > percent + 10:
|
304 | 1 | tkerber | # print ("%d%%" % perce),
|
305 | 1 | tkerber | # percent = perce
|
306 | 1 | tkerber | assert(self.nput == self.natoms) |
307 | 1 | tkerber | |
308 | 1 | tkerber | def inside(self, point): |
309 | 1 | tkerber | "Is a point inside the unit cell?"
|
310 | 1 | tkerber | return (np.dot(self.miller[0], point) >= 0 and |
311 | 1 | tkerber | np.dot(self.miller[0], point - self.farpoint) < 0 and |
312 | 1 | tkerber | np.dot(self.miller[1], point) >= 0 and |
313 | 1 | tkerber | np.dot(self.miller[1], point - self.farpoint) < 0 and |
314 | 1 | tkerber | np.dot(self.miller[2], point) >= 0 and |
315 | 1 | tkerber | np.dot(self.miller[2], point - self.farpoint) < 0) |
316 | 1 | tkerber | |
317 | 1 | tkerber | def put_atom(self, point): |
318 | 1 | tkerber | "Place an atom given its integer coordinates."
|
319 | 1 | tkerber | if self.bravais_basis is None: |
320 | 1 | tkerber | # No basis - just place a single atom
|
321 | 1 | tkerber | pos = np.dot(point, self.crystal_basis)
|
322 | 1 | tkerber | if self.debug >= 2: |
323 | 1 | tkerber | print ("Placing an atom at (%d,%d,%d) ~ (%.3f, %.3f, %.3f)." |
324 | 1 | tkerber | % (tuple(point) + tuple(pos))) |
325 | 1 | tkerber | self.atoms[self.nput] = pos |
326 | 1 | tkerber | self.elements[self.nput] = self.atomicnumber |
327 | 1 | tkerber | self.nput += 1 |
328 | 1 | tkerber | else:
|
329 | 1 | tkerber | for i, offset in enumerate(self.natural_bravais_basis): |
330 | 1 | tkerber | pos = np.dot(point + offset, self.crystal_basis)
|
331 | 1 | tkerber | if self.debug >= 2: |
332 | 1 | tkerber | print ("Placing an atom at (%d+%f, %d+%f, %d+%f) ~ (%.3f, %.3f, %.3f)." |
333 | 1 | tkerber | % (point[0], offset[0], point[1], offset[1], |
334 | 1 | tkerber | point[2], offset[2], pos[0], pos[1], pos[2])) |
335 | 1 | tkerber | self.atoms[self.nput] = pos |
336 | 1 | tkerber | if self.element_basis is None: |
337 | 1 | tkerber | self.elements[self.nput] = self.atomicnumber |
338 | 1 | tkerber | else:
|
339 | 1 | tkerber | self.elements[self.nput] = self.atomicnumber[i] |
340 | 1 | tkerber | self.nput += 1 |
341 | 1 | tkerber | |
342 | 1 | tkerber | def find_directions(self, directions, miller): |
343 | 1 | tkerber | "Find missing directions and miller indices from the specified ones."
|
344 | 1 | tkerber | directions = list(directions)
|
345 | 1 | tkerber | miller = list(miller)
|
346 | 1 | tkerber | # If no directions etc are specified, use a sensible default.
|
347 | 1 | tkerber | if directions == [None, None, None] and miller == [None, None, None]: |
348 | 1 | tkerber | directions = [[1,0,0], [0,1,0], [0,0,1]] |
349 | 1 | tkerber | # Now fill in missing directions and miller indices. This is an
|
350 | 1 | tkerber | # iterative process.
|
351 | 1 | tkerber | change = 1
|
352 | 1 | tkerber | while change:
|
353 | 1 | tkerber | change = False
|
354 | 1 | tkerber | missing = 0
|
355 | 1 | tkerber | for i in (0,1,2): |
356 | 1 | tkerber | (j,k) = self.other[i]
|
357 | 1 | tkerber | if directions[i] is None: |
358 | 1 | tkerber | missing += 1
|
359 | 1 | tkerber | if miller[j] is not None and miller[k] is not None: |
360 | 1 | tkerber | directions[i] = reduceindex(cross(miller[j], |
361 | 1 | tkerber | miller[k])) |
362 | 1 | tkerber | change = True
|
363 | 1 | tkerber | if self.debug >= 2: |
364 | 1 | tkerber | print "Calculating directions[%d] from miller indices" % i |
365 | 1 | tkerber | if miller[i] is None: |
366 | 1 | tkerber | missing += 1
|
367 | 1 | tkerber | if directions[j] is not None and directions[k] is not None: |
368 | 1 | tkerber | miller[i] = reduceindex(cross(directions[j], |
369 | 1 | tkerber | directions[k])) |
370 | 1 | tkerber | change = True
|
371 | 1 | tkerber | if self.debug >= 2: |
372 | 1 | tkerber | print "Calculating miller[%d] from directions" % i |
373 | 1 | tkerber | if missing:
|
374 | 1 | tkerber | raise ValueError, "Specification of directions and miller indices is incomplete." |
375 | 1 | tkerber | # Make sure that everything is Numeric arrays
|
376 | 1 | tkerber | self.directions = np.array(directions)
|
377 | 1 | tkerber | self.miller = np.array(miller)
|
378 | 1 | tkerber | # Check for left-handed coordinate system
|
379 | 1 | tkerber | if np.linalg.det(self.directions) < 0: |
380 | 1 | tkerber | print "WARNING: Creating a left-handed coordinate system!" |
381 | 1 | tkerber | self.miller = -self.miller |
382 | 1 | tkerber | self.handedness = -1 |
383 | 1 | tkerber | else:
|
384 | 1 | tkerber | self.handedness = 1 |
385 | 1 | tkerber | # Now check for consistency
|
386 | 1 | tkerber | for i in (0,1,2): |
387 | 1 | tkerber | (j,k) = self.other[i]
|
388 | 1 | tkerber | m = reduceindex(self.handedness *
|
389 | 1 | tkerber | cross(self.directions[j], self.directions[k])) |
390 | 1 | tkerber | if sum(np.not_equal(m, self.miller[i])): |
391 | 1 | tkerber | print "ERROR: Miller index %s is inconsisten with directions %d and %d" % (i,j,k) |
392 | 1 | tkerber | print "Miller indices:" |
393 | 1 | tkerber | print str(self.miller) |
394 | 1 | tkerber | print "Directions:" |
395 | 1 | tkerber | print str(self.directions) |
396 | 1 | tkerber | raise ValueError, "Inconsistent specification of miller indices and directions." |
397 | 1 | tkerber | |
398 | 1 | tkerber | def print_directions_and_miller(self, txt=""): |
399 | 1 | tkerber | "Print direction vectors and Miller indices."
|
400 | 1 | tkerber | print "Direction vectors of unit cell%s:" % (txt,) |
401 | 1 | tkerber | for i in (0,1,2): |
402 | 1 | tkerber | print " ", self.directions[i] |
403 | 1 | tkerber | print "Miller indices of surfaces%s:" % (txt,) |
404 | 1 | tkerber | for i in (0,1,2): |
405 | 1 | tkerber | print " ", self.miller[i] |
406 | 1 | tkerber | |
407 | 1 | tkerber | class MillerInfo: |
408 | 1 | tkerber | """Mixin class to provide information about Miller indices."""
|
409 | 1 | tkerber | def miller_to_direction(self, miller): |
410 | 1 | tkerber | """Returns the direction corresponding to a given Miller index."""
|
411 | 1 | tkerber | return np.dot(miller, self.millerbasis) |
412 | 1 | tkerber | |
413 | 1 | tkerber | class Lattice(Atoms, MillerInfo): |
414 | 1 | tkerber | """List of atoms initially containing a regular lattice of atoms.
|
415 | 1 | tkerber |
|
416 | 1 | tkerber | A part from the usual list of atoms methods this list of atoms type
|
417 | 1 | tkerber | also has a method, `miller_to_direction`, used to convert from Miller
|
418 | 1 | tkerber | indices to directions in the coordinate system of the lattice.
|
419 | 1 | tkerber | """
|
420 | 1 | tkerber | pass
|
421 | 1 | tkerber | |
422 | 1 | tkerber | # Helper functions
|
423 | 1 | tkerber | def cross(a, b): |
424 | 1 | tkerber | """The cross product of two vectors."""
|
425 | 1 | tkerber | return np.array((a[1]*b[2] - b[1]*a[2], |
426 | 1 | tkerber | a[2]*b[0] - b[2]*a[0], |
427 | 1 | tkerber | a[0]*b[1] - b[0]*a[1])) |
428 | 1 | tkerber | |
429 | 1 | tkerber | def gcd(a,b): |
430 | 1 | tkerber | """Greatest Common Divisor of a and b."""
|
431 | 1 | tkerber | while a != 0: |
432 | 1 | tkerber | a,b = b%a,a |
433 | 1 | tkerber | return b
|
434 | 1 | tkerber | |
435 | 1 | tkerber | def reduceindex(M): |
436 | 1 | tkerber | "Reduce Miller index to the lowest equivalent integers."
|
437 | 1 | tkerber | oldM = M |
438 | 1 | tkerber | g = gcd(M[0], M[1]) |
439 | 1 | tkerber | h = gcd(g, M[2])
|
440 | 1 | tkerber | while h != 1: |
441 | 1 | tkerber | M = M/h |
442 | 1 | tkerber | g = gcd(M[0], M[1]) |
443 | 1 | tkerber | h = gcd(g, M[2])
|
444 | 1 | tkerber | if np.dot(oldM, M) > 0: |
445 | 1 | tkerber | return M
|
446 | 1 | tkerber | else:
|
447 | 1 | tkerber | return -M
|