root / ase / embed.py @ 19
Historique | Voir | Annoter | Télécharger (11,69 ko)
1 | 13 | tkerber | """
|
---|---|---|---|
2 | 13 | tkerber | This module is the EMBED module for ASE
|
3 | 13 | tkerber | implemented by T. Kerber
|
4 | 13 | tkerber |
|
5 | 13 | tkerber | Torsten Kerber, ENS LYON: 2011, 07, 11
|
6 | 13 | tkerber |
|
7 | 13 | tkerber | This work is supported by Award No. UK-C0017, made by King Abdullah
|
8 | 13 | tkerber | University of Science and Technology (KAUST)
|
9 | 13 | tkerber | """
|
10 | 13 | tkerber | |
11 | 10 | tkerber | import math |
12 | 2 | tkerber | from ase import Atom, Atoms |
13 | 2 | tkerber | from ase.data import covalent_radii, atomic_numbers |
14 | 2 | tkerber | |
15 | 2 | tkerber | import numpy as np |
16 | 2 | tkerber | |
17 | 2 | tkerber | class Embed(Atoms): |
18 | 2 | tkerber | #--- constructor of the Embed class ---
|
19 | 16 | tkerber | def __init__(self, system, cluster, cell_cluster = "Auto", cluster_pos = True, linkType = 'H'): |
20 | 2 | tkerber | super(Embed, self).__init__() |
21 | 2 | tkerber | # define the atom map
|
22 | 2 | tkerber | self.atom_map_sys_cl = []
|
23 | 3 | tkerber | self.atom_map_cl_sys = []
|
24 | 2 | tkerber | self.linkatoms = []
|
25 | 2 | tkerber | # cluster dimensions
|
26 | 2 | tkerber | self.xyz_cl_min = None |
27 | 2 | tkerber | self.xyz_cl_max = None |
28 | 2 | tkerber | # set the search radius for link atoms
|
29 | 3 | tkerber | self.d = 10 |
30 | 2 | tkerber | # define the systems for calculations
|
31 | 15 | tkerber | if system is None or cluster is None: |
32 | 15 | tkerber | raise RuntimeError("Embed: system or cluster is not definied") |
33 | 2 | tkerber | self.set_system(system)
|
34 | 15 | tkerber | if cluster_pos:
|
35 | 15 | tkerber | self.set_cluster(cluster)
|
36 | 15 | tkerber | else:
|
37 | 15 | tkerber | self.set_cluster_by_numbers(cluster)
|
38 | 15 | tkerber | |
39 | 10 | tkerber | # set the cell of the system
|
40 | 10 | tkerber | self.set_cell(system.get_cell())
|
41 | 10 | tkerber | self.cell_cluster = cell_cluster
|
42 | 16 | tkerber | |
43 | 16 | tkerber | self.embed(linkType)
|
44 | 2 | tkerber | return
|
45 | 3 | tkerber | |
46 | 3 | tkerber | #--- set the cluster ---
|
47 | 2 | tkerber | def set_cluster(self, atoms): |
48 | 2 | tkerber | import copy |
49 | 2 | tkerber | # set the min/max cluster dimensions
|
50 | 2 | tkerber | self.xyz_cl_min = atoms[0].get_position() |
51 | 2 | tkerber | self.xyz_cl_max = atoms[0].get_position() |
52 | 2 | tkerber | for atom in atoms: |
53 | 2 | tkerber | # assign the label "Cluster (10)" in atom.TAG
|
54 | 2 | tkerber | atom.set_tag(10)
|
55 | 2 | tkerber | xyz=atom.get_position() |
56 | 2 | tkerber | for i in xrange(3): |
57 | 2 | tkerber | # set the min/max cluster dimensions
|
58 | 2 | tkerber | if xyz[i] < self.xyz_cl_min[i]: |
59 | 2 | tkerber | self.xyz_cl_min[i] = xyz[i]
|
60 | 2 | tkerber | if xyz[i] > self.xyz_cl_max[i]: |
61 | 2 | tkerber | self.xyz_cl_max[i] = xyz[i]
|
62 | 3 | tkerber | |
63 | 2 | tkerber | # add self.d around min/max cluster dimensions
|
64 | 2 | tkerber | self.xyz_cl_min -= [self.d, self.d, self.d] |
65 | 3 | tkerber | self.xyz_cl_max += [self.d, self.d, self.d] |
66 | 2 | tkerber | # set the cluster for low and high level calculation
|
67 | 2 | tkerber | self.atoms_cluster = atoms
|
68 | 2 | tkerber | return
|
69 | 15 | tkerber | |
70 | 15 | tkerber | #--- set cluster by atom numbers ---
|
71 | 15 | tkerber | def set_cluster_by_numbers(self, numbers): |
72 | 15 | tkerber | cluster = Atoms() |
73 | 15 | tkerber | nat = len(self.atoms_system) |
74 | 15 | tkerber | for number in numbers: |
75 | 15 | tkerber | if nat > numbers:
|
76 | 15 | tkerber | raise RuntimeError("QMX: The number of the cluster atom ", number, "is bigger than the number of atoms") |
77 | 15 | tkerber | cluster.append(self.atoms_system[number-1]) |
78 | 15 | tkerber | self.set_cluster(cluster)
|
79 | 2 | tkerber | |
80 | 2 | tkerber | #--- set the system ---
|
81 | 2 | tkerber | def set_system(self, atoms): |
82 | 3 | tkerber | self.atoms_system = atoms
|
83 | 2 | tkerber | # assign the label "Cluster (10)" in atom.TAG
|
84 | 2 | tkerber | for atom in atoms: |
85 | 2 | tkerber | atom.set_tag(0)
|
86 | 2 | tkerber | # update search radius for link atoms
|
87 | 2 | tkerber | dx = 0
|
88 | 2 | tkerber | for atom in atoms: |
89 | 2 | tkerber | r = covalent_radii[atom.get_atomic_number()] |
90 | 2 | tkerber | if (r > dx):
|
91 | 2 | tkerber | dx = r |
92 | 2 | tkerber | self.d = dx * 2.1 |
93 | 2 | tkerber | return
|
94 | 3 | tkerber | |
95 | 2 | tkerber | #--- return cluster ---
|
96 | 2 | tkerber | def get_cluster(self): |
97 | 2 | tkerber | return self.atoms_cluster |
98 | 3 | tkerber | |
99 | 2 | tkerber | def get_system(self): |
100 | 2 | tkerber | return self.atoms_system |
101 | 3 | tkerber | |
102 | 2 | tkerber | #--- Embedding ---
|
103 | 16 | tkerber | def embed(self, linkType): |
104 | 2 | tkerber | # is the cluster and the host system definied ?
|
105 | 2 | tkerber | if self.atoms_cluster is None or self.atoms_system is None: |
106 | 2 | tkerber | return
|
107 | 2 | tkerber | self.find_cluster()
|
108 | 16 | tkerber | self.set_linkatoms(linkType)
|
109 | 2 | tkerber | print "link atoms found: ", len(self.linkatoms) |
110 | 10 | tkerber | if self.cell_cluster == "System": |
111 | 10 | tkerber | self.atoms_cluster.set_cell(self.atoms_system.get_cell()) |
112 | 10 | tkerber | elif self.cell_cluster == "Auto": |
113 | 10 | tkerber | positions = self.atoms_cluster.get_positions()
|
114 | 10 | tkerber | # build cell
|
115 | 10 | tkerber | cell = np.zeros((3, 3), float) |
116 | 17 | tkerber | #for all directions
|
117 | 10 | tkerber | for idir in xrange(3): |
118 | 17 | tkerber | #find the biggest dimensions of the cluster in x,y,z direction
|
119 | 17 | tkerber | l = positions[:, idir].max() - positions[:, idir].min() |
120 | 17 | tkerber | # calculate the box parameters (2*cluster + 60 pm)
|
121 | 17 | tkerber | l = (math.floor((2*l+6)/2.5)+1)*2.5 |
122 | 17 | tkerber | # apply cell parameters
|
123 | 10 | tkerber | cell[idir, idir] = l |
124 | 10 | tkerber | # set parameters to cluster
|
125 | 10 | tkerber | self.atoms_cluster.set_cell(cell)
|
126 | 10 | tkerber | # print information on the screen
|
127 | 17 | tkerber | print "dimension of box surrounding the cluster: ", |
128 | 17 | tkerber | for idir in xrange(3): |
129 | 17 | tkerber | print cell[idir, idir]*10, |
130 | 17 | tkerber | print " pm" |
131 | 10 | tkerber | else:
|
132 | 10 | tkerber | self.atoms_cluster.set_cell(self.cell_cluster) |
133 | 2 | tkerber | |
134 | 2 | tkerber | def find_cluster(self): |
135 | 2 | tkerber | # set tolerance
|
136 | 2 | tkerber | d = 0.001
|
137 | 2 | tkerber | #atoms
|
138 | 2 | tkerber | xyzs_cl=[] |
139 | 2 | tkerber | for atom_cl in self.atoms_cluster: |
140 | 2 | tkerber | xyzs_cl.append(atom_cl.get_position()) |
141 | 2 | tkerber | xyzs_sys=[] |
142 | 2 | tkerber | for atom_sys in self.atoms_system: |
143 | 2 | tkerber | xyzs_sys.append(atom_sys.get_position()) |
144 | 3 | tkerber | |
145 | 3 | tkerber | self.atom_map_sys_cl = np.zeros(len(self.atoms_system), int) |
146 | 3 | tkerber | self.atom_map_cl_sys = np.zeros(len(self.atoms_cluster), int) |
147 | 3 | tkerber | # loop over cluster atoms atom_sys
|
148 | 2 | tkerber | for iat_sys in xrange(len(self.atoms_system)): |
149 | 2 | tkerber | # get the coordinates of the system atom atom_sys
|
150 | 2 | tkerber | xyz_sys = xyzs_sys[iat_sys] |
151 | 2 | tkerber | # bSysOnly: no identical atom has been found
|
152 | 2 | tkerber | bSysOnly = True
|
153 | 2 | tkerber | # loop over system atoms atom_cl
|
154 | 2 | tkerber | for iat_cl in xrange(len(self.atoms_cluster)): |
155 | 2 | tkerber | # difference vector between both atoms
|
156 | 2 | tkerber | xyz_diff = np.abs(xyzs_sys[iat_sys]-xyzs_cl[iat_cl]) |
157 | 2 | tkerber | # identical atoms
|
158 | 2 | tkerber | if xyz_diff[0] < d and xyz_diff[1] < d and xyz_diff[2] < d: |
159 | 2 | tkerber | # set tag (CLUSTER+HOST: 10) to atom_sys
|
160 | 2 | tkerber | self.atoms_system[iat_sys].set_tag(10) |
161 | 2 | tkerber | # map the atom in the atom list
|
162 | 3 | tkerber | self.atom_map_sys_cl[iat_sys] = iat_cl
|
163 | 3 | tkerber | self.atom_map_cl_sys[iat_cl] = iat_sys
|
164 | 2 | tkerber | # atom has been identified
|
165 | 2 | tkerber | bSysOnly = False
|
166 | 2 | tkerber | break
|
167 | 2 | tkerber | if bSysOnly:
|
168 | 2 | tkerber | self.atom_map_sys_cl[iat_sys] = -1 |
169 | 2 | tkerber | |
170 | 16 | tkerber | def set_linkatoms(self, linkType, tol=15.): |
171 | 2 | tkerber | # local copies of xyz coordinates to avoid massive copying of xyz objects
|
172 | 2 | tkerber | xyzs_cl=[] |
173 | 2 | tkerber | for atom_cl in self.atoms_cluster: |
174 | 2 | tkerber | xyzs_cl.append(atom_cl.get_position()) |
175 | 2 | tkerber | xyzs_sys=[] |
176 | 2 | tkerber | for atom_sys in self.atoms_system: |
177 | 3 | tkerber | xyzs_sys.append(atom_sys.get_position()) |
178 | 2 | tkerber | # number of atoms in the cluster and the system
|
179 | 2 | tkerber | nat_cl=len(self.atoms_cluster) |
180 | 2 | tkerber | nat_sys=len(self.atoms_system) |
181 | 2 | tkerber | # system has pbc?
|
182 | 3 | tkerber | pbc = self.get_pbc()
|
183 | 2 | tkerber | # set the bond table
|
184 | 2 | tkerber | bonds = [] |
185 | 2 | tkerber | # set the 27 cell_vec, starting with the (0,0,0) vector for the unit cell
|
186 | 2 | tkerber | cells_L = [(0.0, 0.0, 0.0)] |
187 | 10 | tkerber | # get the cell vectors of the host system and build up a 3 by 3 supercell to search for neighbors in the surrounding
|
188 | 10 | tkerber | cell = self.atoms_system.get_cell()
|
189 | 10 | tkerber | if self.atoms_system.get_pbc().any(): |
190 | 10 | tkerber | for ix in xrange(-1, 2): |
191 | 10 | tkerber | for iy in xrange(-1, 2): |
192 | 10 | tkerber | for iz in xrange(-1, 2): |
193 | 10 | tkerber | if ix == 0 and iy == 0 and iz == 0: |
194 | 10 | tkerber | continue
|
195 | 10 | tkerber | cells_L.append(np.dot([ix, iy, iz], cell)) |
196 | 2 | tkerber | # save the radius of system atoms
|
197 | 2 | tkerber | rs_sys = [] |
198 | 2 | tkerber | for atom in self.atoms_system: |
199 | 2 | tkerber | rs_sys.append(covalent_radii[atom.get_atomic_number()]) |
200 | 2 | tkerber | # sum over cluster atoms (iat_cl)
|
201 | 2 | tkerber | for iat_cl in xrange(nat_cl): |
202 | 2 | tkerber | # get the cluster atom
|
203 | 2 | tkerber | atom_cl=self.atoms_cluster[iat_cl]
|
204 | 2 | tkerber | # ignore link atoms
|
205 | 2 | tkerber | if atom_cl.get_tag() == 50: |
206 | 2 | tkerber | continue
|
207 | 2 | tkerber | # xyz coordinates and covalent radius of the cluster atom iat_cl
|
208 | 2 | tkerber | xyz_cl = xyzs_cl[iat_cl] |
209 | 2 | tkerber | r_cl = covalent_radii[atom_cl.get_atomic_number()] |
210 | 3 | tkerber | |
211 | 2 | tkerber | # sum over system atoms (iat_sys)
|
212 | 2 | tkerber | for iat_sys in xrange(nat_sys): |
213 | 2 | tkerber | # avoid cluster atoms
|
214 | 2 | tkerber | if self.atoms_system[iat_sys].get_tag()==10: |
215 | 2 | tkerber | continue
|
216 | 2 | tkerber | # sum over all cell_L
|
217 | 2 | tkerber | for cell_L in cells_L: |
218 | 2 | tkerber | # xyz coordinates and covalent radius of the system atom iat_sys
|
219 | 2 | tkerber | xyz_sys = xyzs_sys[iat_sys]+cell_L |
220 | 2 | tkerber | # go only in distance self.d around the cluster
|
221 | 2 | tkerber | lcont = True
|
222 | 2 | tkerber | for i in xrange(3): |
223 | 3 | tkerber | if (xyz_sys[i] < self.xyz_cl_min[i] or |
224 | 2 | tkerber | xyz_sys[i] > self.xyz_cl_max[i]):
|
225 | 2 | tkerber | lcont = False
|
226 | 2 | tkerber | break
|
227 | 2 | tkerber | if not lcont: |
228 | 2 | tkerber | continue
|
229 | 2 | tkerber | # xyz coordinates and covalent radius of the system atom iat_sys
|
230 | 2 | tkerber | r_sys = rs_sys[iat_sys] |
231 | 2 | tkerber | # diff vector
|
232 | 2 | tkerber | xyz_diff = xyz_sys - xyz_cl |
233 | 2 | tkerber | # distance between the atoms
|
234 | 2 | tkerber | r = np.sqrt(np.dot(xyz_diff, xyz_diff)) |
235 | 2 | tkerber | # ratio of the distance to the sum of covalent radius
|
236 | 2 | tkerber | f = r / (r_cl + r_sys) |
237 | 2 | tkerber | if f <= (1+tol/100.) and f >= (1-2*tol/100.): |
238 | 3 | tkerber | s = cell_L, self.atom_map_cl_sys[iat_cl], iat_sys, r_cl
|
239 | 2 | tkerber | bonds.append(s) |
240 | 2 | tkerber | break
|
241 | 2 | tkerber | if f <= (1-2*tol/100.): |
242 | 2 | tkerber | raise RuntimeError("QMX: The cluster atom", iat_cl, " and the system atom", iat_sys, "came too close") |
243 | 3 | tkerber | |
244 | 16 | tkerber | r_h = covalent_radii[atomic_numbers[linkType]] |
245 | 2 | tkerber | for bond in bonds: |
246 | 3 | tkerber | cell_L, iat_cl_sys, iat_sys, r_cl = bond |
247 | 2 | tkerber | # assign the tags for the border atoms
|
248 | 2 | tkerber | atom_sys.set_tag(1)
|
249 | 2 | tkerber | atom_cl.set_tag(11)
|
250 | 2 | tkerber | #difference vector for the link atom, scaling
|
251 | 3 | tkerber | xyz_diff = xyzs_sys[iat_sys] + cell_L - xyzs_sys[iat_cl_sys] |
252 | 2 | tkerber | r = (r_cl + r_h) |
253 | 2 | tkerber | xyz_diff *= r / np.sqrt(np.dot(xyz_diff, xyz_diff)) |
254 | 2 | tkerber | # determine position of the link atom
|
255 | 3 | tkerber | xyz_diff += xyzs_sys[iat_cl_sys] |
256 | 2 | tkerber | # create link atom
|
257 | 16 | tkerber | atom = Atom(symbol=linkType, position=xyz_diff, tag=50)
|
258 | 2 | tkerber | # add atom to cluster
|
259 | 2 | tkerber | self.atoms_cluster.append(atom)
|
260 | 2 | tkerber | # add atom to the linkatoms
|
261 | 3 | tkerber | s = cell_L, iat_cl_sys, iat_sys, r, len(self.atoms_cluster)-1 |
262 | 2 | tkerber | self.linkatoms.append(s)
|
263 | 2 | tkerber | return
|
264 | 3 | tkerber | |
265 | 2 | tkerber | def set_positions(self, positions_new): |
266 | 2 | tkerber | # number of atoms
|
267 | 2 | tkerber | nat_sys=len(self.atoms_system) |
268 | 2 | tkerber | # go over all pairs of atoms
|
269 | 2 | tkerber | for iat_sys in xrange(nat_sys): |
270 | 2 | tkerber | xyz = positions_new[iat_sys] |
271 | 5 | tkerber | self.atoms_system[iat_sys].set_position(xyz)
|
272 | 2 | tkerber | iat_cl = self.atom_map_sys_cl[iat_sys]
|
273 | 2 | tkerber | if iat_cl > -1: |
274 | 2 | tkerber | self.atoms_cluster[iat_cl].set_position(xyz)
|
275 | 3 | tkerber | |
276 | 3 | tkerber | for cell_L, iat_cl_sys, iat_sys, r, iat in self.linkatoms: |
277 | 2 | tkerber | # determine position of the link atom
|
278 | 5 | tkerber | xyz_cl = positions_new[iat_cl_sys] |
279 | 5 | tkerber | xyz = positions_new[iat_sys] - xyz_cl + cell_L |
280 | 2 | tkerber | xyz *= r / np.sqrt(np.dot(xyz, xyz)) |
281 | 2 | tkerber | xyz += xyz_cl |
282 | 2 | tkerber | # update xyz coordinates of the cluster
|
283 | 2 | tkerber | self.atoms_cluster[iat].set_position(xyz)
|
284 | 3 | tkerber | |
285 | 2 | tkerber | def __getitem__(self, i): |
286 | 2 | tkerber | return self.atoms_system.__getitem__(i) |
287 | 2 | tkerber | |
288 | 2 | tkerber | def get_positions(self): |
289 | 2 | tkerber | return self.atoms_system.get_positions() |
290 | 3 | tkerber | |
291 | 2 | tkerber | def __add__(self, other): |
292 | 2 | tkerber | return self.atoms_system.__add__(other) |
293 | 3 | tkerber | |
294 | 2 | tkerber | def __delitem__(self, i): |
295 | 2 | tkerber | return self.atoms_system.__delitem__(i) |
296 | 3 | tkerber | |
297 | 2 | tkerber | def __len__(self): |
298 | 2 | tkerber | return self.atoms_system.__len__() |
299 | 3 | tkerber | |
300 | 3 | tkerber | def get_chemical_symbols(self, reduce=False): |
301 | 3 | tkerber | return self.atoms_system.get_chemical_symbols(reduce) |