Statistiques
| Révision :

root / ase / lattice / spacegroup / cell.py @ 18

Historique | Voir | Annoter | Télécharger (3,36 ko)

1
# Copyright (C) 2010, Jesper Friis
2
# (see accompanying license files for details).
3

    
4
import numpy as np
5
from numpy import pi, sin, cos, tan, arcsin, arccos, arctan, sqrt
6
from numpy import dot
7
from numpy.linalg import norm
8

    
9
import ase
10

    
11

    
12
__ALL__ = ['cell_to_cellpar', 'cellpar_to_cell', 'metric_from_cell']
13

    
14

    
15
def unit_vector(x):
16
    """Return a unit vector in the same direction as x."""
17
    y = np.array(x, dtype='float')
18
    return y/norm(y)
19

    
20

    
21
def angle(x, y):
22
    """Return the angle between vectors a and b in degrees."""
23
    return arccos(dot(x, y)/(norm(x)*norm(y)))*180./pi
24

    
25

    
26
def cell_to_cellpar(cell):
27
    """Returns the cell parameters [a, b, c, alpha, beta, gamma] as a
28
    numpy array."""
29
    va, vb, vc = cell
30
    a = np.linalg.norm(va)
31
    b = np.linalg.norm(vb)
32
    c = np.linalg.norm(vc)
33
    alpha = 180.0/pi*arccos(dot(vb, vc)/(b*c))
34
    beta  = 180.0/pi*arccos(dot(vc, va)/(c*a))
35
    gamma = 180.0/pi*arccos(dot(va, vb)/(a*b))
36
    return np.array([a, b, c, alpha, beta, gamma])
37
        
38

    
39
def cellpar_to_cell(cellpar, ab_normal=(0,0,1), a_direction=None):
40
    """Return a 3x3 cell matrix from `cellpar` = [a, b, c, alpha,
41
    beta, gamma].  The returned cell is orientated such that a and b
42
    are normal to `ab_normal` and a is parallel to the projection of
43
    `a_direction` in the a-b plane.
44

45
    Default `a_direction` is (1,0,0), unless this is parallel to
46
    `ab_normal`, in which case default `a_direction` is (0,0,1).
47

48
    The returned cell has the vectors va, vb and vc along the rows. The
49
    cell will be oriented such that va and vb are normal to `ab_normal`
50
    and va will be along the projection of `a_direction` onto the a-b
51
    plane.
52

53
    Example:
54

55
    >>> cell = cellpar_to_cell([1, 2, 4,  10,  20, 30], (0,1,1), (1,2,3))
56
    >>> np.round(cell, 3)
57
    array([[ 0.816, -0.408,  0.408],
58
           [ 1.992, -0.13 ,  0.13 ],
59
           [ 3.859, -0.745,  0.745]])
60

61
    """
62
    if a_direction is None:
63
        if np.linalg.norm(np.cross(ab_normal, (1,0,0))) < 1e-5:
64
            a_direction = (0,0,1)
65
        else:
66
            a_direction = (1,0,0)
67

    
68
    # Define rotated X,Y,Z-system, with Z along ab_normal and X along
69
    # the projection of a_direction onto the normal plane of Z.
70
    ad = np.array(a_direction)
71
    Z = unit_vector(ab_normal)
72
    X = unit_vector(ad - dot(ad, Z)*Z)
73
    Y = np.cross(Z, X)
74

    
75
    # Express va, vb and vc in the X,Y,Z-system
76
    alpha, beta, gamma = 90., 90., 90.
77
    if isinstance(cellpar, (int, long, float)):
78
        a = b = c = cellpar
79
    elif len(cellpar) == 1:
80
        a = b = c = cellpar[0]
81
    elif len(cellpar) == 3:
82
        a, b, c = cellpar
83
        alpha, beta, gamma = 90., 90., 90.
84
    else:
85
        a, b, c, alpha, beta, gamma = cellpar
86
    alpha *= pi/180.0
87
    beta *= pi/180.0
88
    gamma *= pi/180.0
89
    va = a * np.array([1, 0, 0])
90
    vb = b * np.array([cos(gamma), sin(gamma), 0])
91
    cx = cos(beta)
92
    cy = (cos(alpha) - cos(beta)*cos(gamma))/sin(gamma)
93
    cz = sqrt(1. - cx*cx - cy*cy)
94
    vc = c * np.array([cx, cy, cz])
95

    
96
    # Convert to the Cartesian x,y,z-system
97
    abc = np.vstack((va, vb, vc))
98
    T = np.vstack((X, Y, Z))
99
    cell = dot(abc, T)
100
    return cell
101

    
102

    
103
def metric_from_cell(cell):
104
    """Calculates the metric matrix from cell, which is given in the
105
    Cartesian system."""
106
    cell = np.asarray(cell, dtype=float)
107
    return np.dot(cell, cell.T)
108

    
109

    
110

    
111

    
112
if __name__ == '__main__':
113
    import doctest
114
    print 'doctest: ', doctest.testmod()
115