root / ase / utils / linesearch.py @ 18
Historique | Voir | Annoter | Télécharger (13,96 ko)
1 | 1 | tkerber | import numpy as np |
---|---|---|---|
2 | 1 | tkerber | import __builtin__ |
3 | 1 | tkerber | pymin = __builtin__.min |
4 | 1 | tkerber | pymax = __builtin__.max |
5 | 1 | tkerber | |
6 | 1 | tkerber | class LineSearch: |
7 | 1 | tkerber | def __init__(self, xtol=1e-14): |
8 | 1 | tkerber | |
9 | 1 | tkerber | self.xtol = xtol
|
10 | 1 | tkerber | self.task = 'START' |
11 | 1 | tkerber | self.isave = np.zeros((2,), np.intc) |
12 | 1 | tkerber | self.dsave = np.zeros((13,), float) |
13 | 1 | tkerber | self.fc = 0 |
14 | 1 | tkerber | self.gc = 0 |
15 | 1 | tkerber | self.case = 0 |
16 | 1 | tkerber | self.old_stp = 0 |
17 | 1 | tkerber | |
18 | 1 | tkerber | def _line_search(self, func, myfprime, xk, pk, gfk, old_fval, old_old_fval, |
19 | 1 | tkerber | maxstep=.2, c1=.23, c2=0.46, xtrapl=1.1, xtrapu=4., |
20 | 1 | tkerber | stpmax=50., stpmin=1e-8, args=()): |
21 | 1 | tkerber | self.stpmin = stpmin
|
22 | 1 | tkerber | self.pk = pk
|
23 | 1 | tkerber | p_size = np.sqrt((pk **2).sum())
|
24 | 1 | tkerber | self.stpmax = stpmax
|
25 | 1 | tkerber | self.xtrapl = xtrapl
|
26 | 1 | tkerber | self.xtrapu = xtrapu
|
27 | 1 | tkerber | self.maxstep = maxstep
|
28 | 1 | tkerber | phi0 = old_fval |
29 | 1 | tkerber | derphi0 = np.dot(gfk,pk) |
30 | 1 | tkerber | self.dim = len(pk) |
31 | 1 | tkerber | self.gms = np.sqrt(self.dim) * maxstep |
32 | 1 | tkerber | #alpha1 = pymin(maxstep,1.01*2*(phi0-old_old_fval)/derphi0)
|
33 | 1 | tkerber | alpha1 = 1.
|
34 | 1 | tkerber | self.no_update = False |
35 | 1 | tkerber | |
36 | 1 | tkerber | if isinstance(myfprime,type(())): |
37 | 1 | tkerber | eps = myfprime[1]
|
38 | 1 | tkerber | fprime = myfprime[0]
|
39 | 1 | tkerber | newargs = (f,eps) + args |
40 | 1 | tkerber | gradient = False
|
41 | 1 | tkerber | else:
|
42 | 1 | tkerber | fprime = myfprime |
43 | 1 | tkerber | newargs = args |
44 | 1 | tkerber | gradient = True
|
45 | 1 | tkerber | |
46 | 1 | tkerber | fval = old_fval |
47 | 1 | tkerber | gval = gfk |
48 | 1 | tkerber | self.steps=[]
|
49 | 1 | tkerber | |
50 | 1 | tkerber | while 1: |
51 | 1 | tkerber | stp = self.step(alpha1, phi0, derphi0, c1, c2,
|
52 | 1 | tkerber | self.xtol,
|
53 | 1 | tkerber | self.isave, self.dsave) |
54 | 1 | tkerber | |
55 | 1 | tkerber | if self.task[:2] == 'FG': |
56 | 1 | tkerber | alpha1 = stp |
57 | 1 | tkerber | fval = func(xk + stp * pk, *args) |
58 | 1 | tkerber | self.fc += 1 |
59 | 1 | tkerber | gval = fprime(xk + stp * pk, *newargs) |
60 | 1 | tkerber | if gradient: self.gc += 1 |
61 | 1 | tkerber | else: self.fc += len(xk) + 1 |
62 | 1 | tkerber | phi0 = fval |
63 | 1 | tkerber | derphi0 = np.dot(gval,pk) |
64 | 1 | tkerber | self.old_stp = alpha1
|
65 | 1 | tkerber | if self.no_update == True: |
66 | 1 | tkerber | break
|
67 | 1 | tkerber | else:
|
68 | 1 | tkerber | break
|
69 | 1 | tkerber | |
70 | 1 | tkerber | if self.task[:5] == 'ERROR' or self.task[1:4] == 'WARN': |
71 | 1 | tkerber | stp = None # failed |
72 | 1 | tkerber | return stp, fval, old_fval, self.no_update |
73 | 1 | tkerber | |
74 | 1 | tkerber | def step(self, stp, f, g, c1, c2, xtol, isave, dsave): |
75 | 1 | tkerber | if self.task[:5] == 'START': |
76 | 1 | tkerber | # Check the input arguments for errors.
|
77 | 1 | tkerber | if stp < self.stpmin: |
78 | 1 | tkerber | self.task = 'ERROR: STP .LT. minstep' |
79 | 1 | tkerber | if stp > self.stpmax: |
80 | 1 | tkerber | self.task = 'ERROR: STP .GT. maxstep' |
81 | 1 | tkerber | if g >= 0: |
82 | 1 | tkerber | self.task = 'ERROR: INITIAL G >= 0' |
83 | 1 | tkerber | if c1 < 0: |
84 | 1 | tkerber | self.task = 'ERROR: c1 .LT. 0' |
85 | 1 | tkerber | if c2 < 0: |
86 | 1 | tkerber | self.task = 'ERROR: c2 .LT. 0' |
87 | 1 | tkerber | if xtol < 0: |
88 | 1 | tkerber | self.task = 'ERROR: XTOL .LT. 0' |
89 | 1 | tkerber | if self.stpmin < 0: |
90 | 1 | tkerber | self.task = 'ERROR: minstep .LT. 0' |
91 | 1 | tkerber | if self.stpmax < self.stpmin: |
92 | 1 | tkerber | self.task = 'ERROR: maxstep .LT. minstep' |
93 | 1 | tkerber | if self.task[:5] == 'ERROR': |
94 | 1 | tkerber | return stp
|
95 | 1 | tkerber | |
96 | 1 | tkerber | # Initialize local variables.
|
97 | 1 | tkerber | self.bracket = False |
98 | 1 | tkerber | stage = 1
|
99 | 1 | tkerber | finit = f |
100 | 1 | tkerber | ginit = g |
101 | 1 | tkerber | gtest = c1 * ginit |
102 | 1 | tkerber | width = self.stpmax - self.stpmin |
103 | 1 | tkerber | width1 = width / .5
|
104 | 1 | tkerber | # The variables stx, fx, gx contain the values of the step,
|
105 | 1 | tkerber | # function, and derivative at the best step.
|
106 | 1 | tkerber | # The variables sty, fy, gy contain the values of the step,
|
107 | 1 | tkerber | # function, and derivative at sty.
|
108 | 1 | tkerber | # The variables stp, f, g contain the values of the step,
|
109 | 1 | tkerber | # function, and derivative at stp.
|
110 | 1 | tkerber | stx = 0
|
111 | 1 | tkerber | fx = finit |
112 | 1 | tkerber | gx = ginit |
113 | 1 | tkerber | sty = 0
|
114 | 1 | tkerber | fy = finit |
115 | 1 | tkerber | gy = ginit |
116 | 1 | tkerber | stmin = 0
|
117 | 1 | tkerber | stmax = stp + self.xtrapu * stp
|
118 | 1 | tkerber | self.task = 'FG' |
119 | 1 | tkerber | self.save((stage, ginit, gtest, gx,
|
120 | 1 | tkerber | gy, finit, fx, fy, stx, sty, |
121 | 1 | tkerber | stmin, stmax, width, width1)) |
122 | 1 | tkerber | stp = self.determine_step(stp)
|
123 | 1 | tkerber | #return stp, f, g
|
124 | 1 | tkerber | return stp
|
125 | 1 | tkerber | else:
|
126 | 1 | tkerber | if self.isave[0] == 1: |
127 | 1 | tkerber | self.bracket = True |
128 | 1 | tkerber | else:
|
129 | 1 | tkerber | self.bracket = False |
130 | 1 | tkerber | stage = self.isave[1] |
131 | 1 | tkerber | (ginit, gtest, gx, gy, finit, fx, fy, stx, sty, stmin, stmax, \ |
132 | 1 | tkerber | width, width1) =self.dsave
|
133 | 1 | tkerber | |
134 | 1 | tkerber | # If psi(stp) <= 0 and f'(stp) >= 0 for some step, then the
|
135 | 1 | tkerber | # algorithm enters the second stage.
|
136 | 1 | tkerber | ftest = finit + stp * gtest |
137 | 1 | tkerber | if stage == 1 and f < ftest and g >= 0.: |
138 | 1 | tkerber | stage = 2
|
139 | 1 | tkerber | |
140 | 1 | tkerber | # Test for warnings.
|
141 | 1 | tkerber | if self.bracket and (stp <= stmin or stp >= stmax): |
142 | 1 | tkerber | self.task = 'WARNING: ROUNDING ERRORS PREVENT PROGRESS' |
143 | 1 | tkerber | if self.bracket and stmax - stmin <= self.xtol * stmax: |
144 | 1 | tkerber | self.task = 'WARNING: XTOL TEST SATISFIED' |
145 | 1 | tkerber | if stp == self.stpmax and f <= ftest and g <= gtest: |
146 | 1 | tkerber | self.task = 'WARNING: STP = maxstep' |
147 | 1 | tkerber | if stp == self.stpmin and (f > ftest or g >= gtest): |
148 | 1 | tkerber | self.task = 'WARNING: STP = minstep' |
149 | 1 | tkerber | |
150 | 1 | tkerber | # Test for convergence.
|
151 | 1 | tkerber | if f <= ftest and abs(g) <= c2 * (- ginit): |
152 | 1 | tkerber | self.task = 'CONVERGENCE' |
153 | 1 | tkerber | |
154 | 1 | tkerber | # Test for termination.
|
155 | 1 | tkerber | if self.task[:4] == 'WARN' or self.task[:4] == 'CONV': |
156 | 1 | tkerber | self.save((stage, ginit, gtest, gx,
|
157 | 1 | tkerber | gy, finit, fx, fy, stx, sty, |
158 | 1 | tkerber | stmin, stmax, width, width1)) |
159 | 1 | tkerber | #return stp, f, g
|
160 | 1 | tkerber | return stp
|
161 | 1 | tkerber | |
162 | 1 | tkerber | # A modified function is used to predict the step during the
|
163 | 1 | tkerber | # first stage if a lower function value has been obtained but
|
164 | 1 | tkerber | # the decrease is not sufficient.
|
165 | 1 | tkerber | #if stage == 1 and f <= fx and f > ftest:
|
166 | 1 | tkerber | # # Define the modified function and derivative values.
|
167 | 1 | tkerber | # fm =f - stp * gtest
|
168 | 1 | tkerber | # fxm = fx - stx * gtest
|
169 | 1 | tkerber | # fym = fy - sty * gtest
|
170 | 1 | tkerber | # gm = g - gtest
|
171 | 1 | tkerber | # gxm = gx - gtest
|
172 | 1 | tkerber | # gym = gy - gtest
|
173 | 1 | tkerber | |
174 | 1 | tkerber | # Call step to update stx, sty, and to compute the new step.
|
175 | 1 | tkerber | # stx, sty, stp, gxm, fxm, gym, fym = self.update (stx, fxm, gxm, sty,
|
176 | 1 | tkerber | # fym, gym, stp, fm, gm,
|
177 | 1 | tkerber | # stmin, stmax)
|
178 | 1 | tkerber | |
179 | 1 | tkerber | # # Reset the function and derivative values for f.
|
180 | 1 | tkerber | |
181 | 1 | tkerber | # fx = fxm + stx * gtest
|
182 | 1 | tkerber | # fy = fym + sty * gtest
|
183 | 1 | tkerber | # gx = gxm + gtest
|
184 | 1 | tkerber | # gy = gym + gtest
|
185 | 1 | tkerber | |
186 | 1 | tkerber | #else:
|
187 | 1 | tkerber | # Call step to update stx, sty, and to compute the new step.
|
188 | 1 | tkerber | |
189 | 1 | tkerber | stx, sty, stp, gx, fx, gy, fy= self.update(stx, fx, gx, sty,
|
190 | 1 | tkerber | fy, gy, stp, f, g, |
191 | 1 | tkerber | stmin, stmax) |
192 | 1 | tkerber | |
193 | 1 | tkerber | |
194 | 1 | tkerber | # Decide if a bisection step is needed.
|
195 | 1 | tkerber | |
196 | 1 | tkerber | if self.bracket: |
197 | 1 | tkerber | if abs(sty-stx) >= .66 * width1: |
198 | 1 | tkerber | stp = stx + .5 * (sty - stx)
|
199 | 1 | tkerber | width1 = width |
200 | 1 | tkerber | width = abs(sty - stx)
|
201 | 1 | tkerber | |
202 | 1 | tkerber | # Set the minimum and maximum steps allowed for stp.
|
203 | 1 | tkerber | |
204 | 1 | tkerber | if self.bracket: |
205 | 1 | tkerber | stmin = min(stx, sty)
|
206 | 1 | tkerber | stmax = max(stx, sty)
|
207 | 1 | tkerber | else:
|
208 | 1 | tkerber | stmin = stp + self.xtrapl * (stp - stx)
|
209 | 1 | tkerber | stmax = stp + self.xtrapu * (stp - stx)
|
210 | 1 | tkerber | |
211 | 1 | tkerber | # Force the step to be within the bounds maxstep and minstep.
|
212 | 1 | tkerber | |
213 | 1 | tkerber | stp = max(stp, self.stpmin) |
214 | 1 | tkerber | stp = min(stp, self.stpmax) |
215 | 1 | tkerber | |
216 | 1 | tkerber | if (stx == stp and stp == self.stpmax and stmin > self.stpmax): |
217 | 1 | tkerber | self.no_update = True |
218 | 1 | tkerber | # If further progress is not possible, let stp be the best
|
219 | 1 | tkerber | # point obtained during the search.
|
220 | 1 | tkerber | |
221 | 1 | tkerber | if (self.bracket and stp < stmin or stp >= stmax) \ |
222 | 1 | tkerber | or (self.bracket and stmax - stmin < self.xtol * stmax): |
223 | 1 | tkerber | stp = stx |
224 | 1 | tkerber | |
225 | 1 | tkerber | # Obtain another function and derivative.
|
226 | 1 | tkerber | |
227 | 1 | tkerber | self.task = 'FG' |
228 | 1 | tkerber | self.save((stage, ginit, gtest, gx,
|
229 | 1 | tkerber | gy, finit, fx, fy, stx, sty, |
230 | 1 | tkerber | stmin, stmax, width, width1)) |
231 | 1 | tkerber | return stp
|
232 | 1 | tkerber | |
233 | 1 | tkerber | def update(self, stx, fx, gx, sty, fy, gy, stp, fp, gp, |
234 | 1 | tkerber | stpmin, stpmax): |
235 | 1 | tkerber | sign = gp * (gx / abs(gx))
|
236 | 1 | tkerber | |
237 | 1 | tkerber | # First case: A higher function value. The minimum is bracketed.
|
238 | 1 | tkerber | # If the cubic step is closer to stx than the quadratic step, the
|
239 | 1 | tkerber | # cubic step is taken, otherwise the average of the cubic and
|
240 | 1 | tkerber | # quadratic steps is taken.
|
241 | 1 | tkerber | if fp > fx: #case1 |
242 | 1 | tkerber | self.case = 1 |
243 | 1 | tkerber | theta = 3. * (fx - fp) / (stp - stx) + gx + gp
|
244 | 1 | tkerber | s = max(abs(theta), abs(gx), abs(gp)) |
245 | 1 | tkerber | gamma = s * np.sqrt((theta / s) ** 2. - (gx / s) * (gp / s))
|
246 | 1 | tkerber | if stp < stx:
|
247 | 1 | tkerber | gamma = -gamma |
248 | 1 | tkerber | p = (gamma - gx) + theta |
249 | 1 | tkerber | q = ((gamma - gx) + gamma) + gp |
250 | 1 | tkerber | r = p / q |
251 | 1 | tkerber | stpc = stx + r * (stp - stx) |
252 | 1 | tkerber | stpq = stx + ((gx / ((fx - fp) / (stp-stx) + gx)) / 2.) \
|
253 | 1 | tkerber | * (stp - stx) |
254 | 1 | tkerber | if (abs(stpc - stx) < abs(stpq - stx)): |
255 | 1 | tkerber | stpf = stpc |
256 | 1 | tkerber | else:
|
257 | 1 | tkerber | stpf = stpc + (stpq - stpc) / 2.
|
258 | 1 | tkerber | |
259 | 1 | tkerber | self.bracket = True |
260 | 1 | tkerber | |
261 | 1 | tkerber | # Second case: A lower function value and derivatives of opposite
|
262 | 1 | tkerber | # sign. The minimum is bracketed. If the cubic step is farther from
|
263 | 1 | tkerber | # stp than the secant step, the cubic step is taken, otherwise the
|
264 | 1 | tkerber | # secant step is taken.
|
265 | 1 | tkerber | |
266 | 1 | tkerber | elif sign < 0: #case2 |
267 | 1 | tkerber | self.case = 2 |
268 | 1 | tkerber | theta = 3. * (fx - fp) / (stp - stx) + gx + gp
|
269 | 1 | tkerber | s = max(abs(theta), abs(gx), abs(gp)) |
270 | 1 | tkerber | gamma = s * np.sqrt((theta / s) ** 2 - (gx / s) * (gp / s))
|
271 | 1 | tkerber | if stp > stx:
|
272 | 1 | tkerber | gamma = -gamma |
273 | 1 | tkerber | p = (gamma - gp) + theta |
274 | 1 | tkerber | q = ((gamma - gp) + gamma) + gx |
275 | 1 | tkerber | r = p / q |
276 | 1 | tkerber | stpc = stp + r * (stx - stp) |
277 | 1 | tkerber | stpq = stp + (gp / (gp - gx)) * (stx - stp) |
278 | 1 | tkerber | if (abs(stpc - stp) > abs(stpq - stp)): |
279 | 1 | tkerber | stpf = stpc |
280 | 1 | tkerber | else:
|
281 | 1 | tkerber | stpf = stpq |
282 | 1 | tkerber | self.bracket = True |
283 | 1 | tkerber | |
284 | 1 | tkerber | # Third case: A lower function value, derivatives of the same sign,
|
285 | 1 | tkerber | # and the magnitude of the derivative decreases.
|
286 | 1 | tkerber | |
287 | 1 | tkerber | elif abs(gp) < abs(gx): #case3 |
288 | 1 | tkerber | self.case = 3 |
289 | 1 | tkerber | # The cubic step is computed only if the cubic tends to infinity
|
290 | 1 | tkerber | # in the direction of the step or if the minimum of the cubic
|
291 | 1 | tkerber | # is beyond stp. Otherwise the cubic step is defined to be the
|
292 | 1 | tkerber | # secant step.
|
293 | 1 | tkerber | |
294 | 1 | tkerber | theta = 3. * (fx - fp) / (stp - stx) + gx + gp
|
295 | 1 | tkerber | s = max(abs(theta), abs(gx), abs(gp)) |
296 | 1 | tkerber | |
297 | 1 | tkerber | # The case gamma = 0 only arises if the cubic does not tend
|
298 | 1 | tkerber | # to infinity in the direction of the step.
|
299 | 1 | tkerber | |
300 | 1 | tkerber | gamma = s * np.sqrt(max(0.,(theta / s) ** 2-(gx / s) * (gp / s))) |
301 | 1 | tkerber | if stp > stx:
|
302 | 1 | tkerber | gamma = -gamma |
303 | 1 | tkerber | p = (gamma - gp) + theta |
304 | 1 | tkerber | q = (gamma + (gx - gp)) + gamma |
305 | 1 | tkerber | r = p / q |
306 | 1 | tkerber | if r < 0. and gamma != 0: |
307 | 1 | tkerber | stpc = stp + r * (stx - stp) |
308 | 1 | tkerber | elif stp > stx:
|
309 | 1 | tkerber | stpc = stpmax |
310 | 1 | tkerber | else:
|
311 | 1 | tkerber | stpc = stpmin |
312 | 1 | tkerber | stpq = stp + (gp / (gp - gx)) * (stx - stp) |
313 | 1 | tkerber | |
314 | 1 | tkerber | if self.bracket: |
315 | 1 | tkerber | |
316 | 1 | tkerber | # A minimizer has been bracketed. If the cubic step is
|
317 | 1 | tkerber | # closer to stp than the secant step, the cubic step is
|
318 | 1 | tkerber | # taken, otherwise the secant step is taken.
|
319 | 1 | tkerber | |
320 | 1 | tkerber | if abs(stpc - stp) < abs(stpq - stp): |
321 | 1 | tkerber | stpf = stpc |
322 | 1 | tkerber | else:
|
323 | 1 | tkerber | stpf = stpq |
324 | 1 | tkerber | if stp > stx:
|
325 | 1 | tkerber | stpf = min(stp + .66 * (sty - stp), stpf) |
326 | 1 | tkerber | else:
|
327 | 1 | tkerber | stpf = max(stp + .66 * (sty - stp), stpf) |
328 | 1 | tkerber | else:
|
329 | 1 | tkerber | |
330 | 1 | tkerber | # A minimizer has not been bracketed. If the cubic step is
|
331 | 1 | tkerber | # farther from stp than the secant step, the cubic step is
|
332 | 1 | tkerber | # taken, otherwise the secant step is taken.
|
333 | 1 | tkerber | |
334 | 1 | tkerber | if abs(stpc - stp) > abs(stpq - stp): |
335 | 1 | tkerber | stpf = stpc |
336 | 1 | tkerber | else:
|
337 | 1 | tkerber | stpf = stpq |
338 | 1 | tkerber | stpf = min(stpmax, stpf)
|
339 | 1 | tkerber | stpf = max(stpmin, stpf)
|
340 | 1 | tkerber | |
341 | 1 | tkerber | # Fourth case: A lower function value, derivatives of the same sign,
|
342 | 1 | tkerber | # and the magnitude of the derivative does not decrease. If the
|
343 | 1 | tkerber | # minimum is not bracketed, the step is either minstep or maxstep,
|
344 | 1 | tkerber | # otherwise the cubic step is taken.
|
345 | 1 | tkerber | |
346 | 1 | tkerber | else: #case4 |
347 | 1 | tkerber | self.case = 4 |
348 | 1 | tkerber | if self.bracket: |
349 | 1 | tkerber | theta = 3. * (fp - fy) / (sty - stp) + gy + gp
|
350 | 1 | tkerber | s = max(abs(theta), abs(gy), abs(gp)) |
351 | 1 | tkerber | gamma = s * np.sqrt((theta / s) ** 2 - (gy / s) * (gp / s))
|
352 | 1 | tkerber | if stp > sty:
|
353 | 1 | tkerber | gamma = -gamma |
354 | 1 | tkerber | p = (gamma - gp) + theta |
355 | 1 | tkerber | q = ((gamma - gp) + gamma) + gy |
356 | 1 | tkerber | r = p / q |
357 | 1 | tkerber | stpc = stp + r * (sty - stp) |
358 | 1 | tkerber | stpf = stpc |
359 | 1 | tkerber | elif stp > stx:
|
360 | 1 | tkerber | stpf = stpmax |
361 | 1 | tkerber | else:
|
362 | 1 | tkerber | stpf = stpmin |
363 | 1 | tkerber | |
364 | 1 | tkerber | # Update the interval which contains a minimizer.
|
365 | 1 | tkerber | |
366 | 1 | tkerber | if fp > fx:
|
367 | 1 | tkerber | sty = stp |
368 | 1 | tkerber | fy = fp |
369 | 1 | tkerber | gy = gp |
370 | 1 | tkerber | else:
|
371 | 1 | tkerber | if sign < 0: |
372 | 1 | tkerber | sty = stx |
373 | 1 | tkerber | fy = fx |
374 | 1 | tkerber | gy = gx |
375 | 1 | tkerber | stx = stp |
376 | 1 | tkerber | fx = fp |
377 | 1 | tkerber | gx = gp |
378 | 1 | tkerber | # Compute the new step.
|
379 | 1 | tkerber | |
380 | 1 | tkerber | stp = self.determine_step(stpf)
|
381 | 1 | tkerber | |
382 | 1 | tkerber | return stx, sty, stp, gx, fx, gy, fy
|
383 | 1 | tkerber | |
384 | 1 | tkerber | def determine_step(self, stp): |
385 | 1 | tkerber | dr = stp - self.old_stp
|
386 | 1 | tkerber | if abs(pymax(self.pk) * dr) > self.maxstep: |
387 | 1 | tkerber | dr /= abs((pymax(self.pk) * dr) / self.maxstep) |
388 | 1 | tkerber | stp = self.old_stp + dr
|
389 | 1 | tkerber | return stp
|
390 | 1 | tkerber | |
391 | 1 | tkerber | def save(self, data): |
392 | 1 | tkerber | if self.bracket: |
393 | 1 | tkerber | self.isave[0] = 1 |
394 | 1 | tkerber | else:
|
395 | 1 | tkerber | self.isave[0] = 0 |
396 | 1 | tkerber | self.isave[1] = data[0] |
397 | 1 | tkerber | self.dsave = data[1:] |