Statistiques
| Révision :

root / ase / lattice / surface.py @ 16

Historique | Voir | Annoter | Télécharger (10,52 ko)

1
"""Helper functions for creating the most common surfaces and related tasks.
2

3
The helper functions can create the most common low-index surfaces,
4
add vacuum layers and add adsorbates.
5

6
"""
7

    
8
from math import sqrt
9

    
10
import numpy as np
11

    
12
from ase.atom import Atom
13
from ase.atoms import Atoms
14
from ase.data import reference_states, atomic_numbers
15

    
16

    
17
def fcc100(symbol, size, a=None, vacuum=None):
18
    """FCC(100) surface.
19
 
20
    Supported special adsorption sites: 'ontop', 'bridge', 'hollow'."""
21
    return surface(symbol, 'fcc', '100', size, a, None, vacuum)
22

    
23
def fcc110(symbol, size, a=None, vacuum=None):
24
    """FCC(110) surface.
25
 
26
    Supported special adsorption sites: 'ontop', 'longbridge',
27
    'shortbridge','hollow'."""
28
    return surface(symbol, 'fcc', '110', size, a, None, vacuum)
29

    
30
def bcc100(symbol, size, a=None, vacuum=None):
31
    """BCC(100) surface.
32
 
33
    Supported special adsorption sites: 'ontop', 'bridge', 'hollow'."""
34
    return surface(symbol, 'bcc', '100', size, a, None, vacuum)
35

    
36
def bcc110(symbol, size, a=None, vacuum=None, orthogonal=False):
37
    """BCC(110) surface.
38
 
39
    Supported special adsorption sites: 'ontop', 'longbridge',
40
    'shortbridge', 'hollow'.
41
 
42
    Use *orthogonal=True* to get an orthogonal unit cell - works only
43
    for size=(i,j,k) with j even."""
44
    return surface(symbol, 'bcc', '110', size, a, None, vacuum, orthogonal)
45

    
46
def bcc111(symbol, size, a=None, vacuum=None, orthogonal=False):
47
    """BCC(111) surface.
48
 
49
    Supported special adsorption sites: 'ontop'.
50
 
51
    Use *orthogonal=True* to get an orthogonal unit cell - works only
52
    for size=(i,j,k) with j even."""
53
    return surface(symbol, 'bcc', '111', size, a, None, vacuum, orthogonal)
54

    
55
def fcc111(symbol, size, a=None, vacuum=None, orthogonal=False):
56
    """FCC(111) surface.
57
 
58
    Supported special adsorption sites: 'ontop', 'bridge', 'fcc' and 'hcp'.
59
 
60
    Use *orthogonal=True* to get an orthogonal unit cell - works only
61
    for size=(i,j,k) with j even."""
62
    return surface(symbol, 'fcc', '111', size, a, None, vacuum, orthogonal)
63

    
64
def hcp0001(symbol, size, a=None, c=None, vacuum=None, orthogonal=False):
65
    """HCP(0001) surface.
66
 
67
    Supported special adsorption sites: 'ontop', 'bridge', 'fcc' and 'hcp'.
68
 
69
    Use *orthogonal=True* to get an orthogonal unit cell - works only
70
    for size=(i,j,k) with j even."""
71
    return surface(symbol, 'hcp', '0001', size, a, c, vacuum, orthogonal)
72

    
73
    
74
def add_adsorbate(slab, adsorbate, height, position=(0, 0), offset=None,
75
                  mol_index=0):
76
    """Add an adsorbate to a surface.
77

78
    This function adds an adsorbate to a slab.  If the slab is
79
    produced by one of the utility functions in ase.lattice.surface, it
80
    is possible to specify the position of the adsorbate by a keyword
81
    (the supported keywords depend on which function was used to
82
    create the slab).
83

84
    If the adsorbate is a molecule, the atom indexed by the mol_index
85
    optional argument is positioned on top of the adsorption position
86
    on the surface, and it is the responsibility of the user to orient
87
    the adsorbate in a sensible way.
88

89
    This function can be called multiple times to add more than one
90
    adsorbate.
91

92
    Parameters:
93

94
    slab: The surface onto which the adsorbate should be added.
95

96
    adsorbate:  The adsorbate. Must be one of the following three types:
97
        A string containing the chemical symbol for a single atom.
98
        An atom object.
99
        An atoms object (for a molecular adsorbate).
100

101
    height: Height above the surface.
102

103
    position: The x-y position of the adsorbate, either as a tuple of
104
        two numbers or as a keyword (if the surface is produced by one
105
        of the functions in ase.lattice.surfaces).
106

107
    offset (default: None): Offsets the adsorbate by a number of unit
108
        cells. Mostly useful when adding more than one adsorbate.
109

110
    mol_index (default: 0): If the adsorbate is a molecule, index of
111
        the atom to be positioned above the location specified by the
112
        position argument.
113

114
    Note *position* is given in absolute xy coordinates (or as
115
    a keyword), whereas offset is specified in unit cells.  This
116
    can be used to give the positions in units of the unit cell by
117
    using *offset* instead.
118
    
119
    """
120
    info = slab.adsorbate_info
121
    if 'cell' not in info:
122
        info['cell'] = slab.get_cell()[:2,:2]
123

    
124
    
125
    pos = np.array([0.0, 0.0])  # (x, y) part
126
    spos = np.array([0.0, 0.0]) # part relative to unit cell
127
    if offset is not None:
128
        spos += np.asarray(offset, float)
129

    
130
    if isinstance(position, str):
131
        # A site-name:
132
        if 'sites' not in info:
133
            raise TypeError('If the atoms are not made by an ' +
134
                            'ase.lattice.surface function, ' +
135
                            'position cannot be a name.')
136
        if position not in info['sites']:
137
            raise TypeError('Adsorption site %s not supported.' % position)
138
        spos += info['sites'][position]
139
    else:
140
        pos += position
141

    
142
    pos += np.dot(spos, info['cell'])
143

    
144
    # Convert the adsorbate to an Atoms object
145
    if isinstance(adsorbate, Atoms):
146
        ads = adsorbate
147
    elif isinstance(adsorbate, Atom):
148
        ads = Atoms([adsorbate])
149
    else:
150
        # Hope it is a useful string or something like that
151
        ads = Atoms(adsorbate)
152

    
153
    # Get the z-coordinate:
154
    try:
155
        a = info['top layer atom index']
156
    except KeyError:
157
        a = slab.positions[:, 2].argmax()
158
        info['top layer atom index']= a
159
    z = slab.positions[a, 2] + height
160

    
161
    # Move adsorbate into position
162
    ads.translate([pos[0], pos[1], z] - ads.positions[mol_index])
163

    
164
    # Attach the adsorbate
165
    slab.extend(ads)
166

    
167

    
168
def surface(symbol, structure, face, size, a, c, vacuum, orthogonal=True):
169
    """Function to build often used surfaces.
170

171
    Don't call this function directly - use fcc100, fcc110, bcc111, ..."""
172
    
173
    Z = atomic_numbers[symbol]
174

    
175
    if a is None:
176
        sym = reference_states[Z]['symmetry'].lower()
177
        if sym != structure:
178
            raise ValueError("Can't guess lattice constant for %s-%s!" %
179
                             (structure, symbol))
180
        a = reference_states[Z]['a']
181

    
182
    if structure == 'hcp' and c is None:
183
        if reference_states[Z]['symmetry'].lower() == 'hcp':
184
            c = reference_states[Z]['c/a'] * a
185
        else:
186
            c = sqrt(8 / 3.0) * a
187

    
188
    positions = np.empty((size[2], size[1], size[0], 3))
189
    positions[..., 0] = np.arange(size[0]).reshape((1, 1, -1))
190
    positions[..., 1] = np.arange(size[1]).reshape((1, -1, 1))
191
    positions[..., 2] = np.arange(size[2]).reshape((-1, 1, 1))
192

    
193
    numbers = np.ones(size[0] * size[1] * size[2], int) * Z
194

    
195
    tags = np.empty((size[2], size[1], size[0]), int)
196
    tags[:] = np.arange(size[2], 0, -1).reshape((-1, 1, 1))
197

    
198
    slab = Atoms(numbers,
199
                 tags=tags.ravel(),
200
                 pbc=(True, True, False),
201
                 cell=size)
202

    
203
    surface_cell = None
204
    sites = {'ontop': (0, 0)}
205
    surf = structure + face
206
    if surf == 'fcc100':
207
        cell = (sqrt(0.5), sqrt(0.5), 0.5)
208
        positions[-2::-2, ..., :2] += 0.5
209
        sites.update({'hollow': (0.5, 0.5), 'bridge': (0.5, 0)})
210
    elif surf == 'fcc110':
211
        cell = (1.0, sqrt(0.5), sqrt(0.125))
212
        positions[-2::-2, ..., :2] += 0.5
213
        sites.update({'hollow': (0.5, 0.5), 'longbridge': (0.5, 0),
214
                      'shortbridge': (0, 0.5)})
215
    elif surf == 'bcc100':
216
        cell = (1.0, 1.0, 0.5)
217
        positions[-2::-2, ..., :2] += 0.5
218
        sites.update({'hollow': (0.5, 0.5), 'bridge': (0.5, 0)})
219
    else:
220
        if orthogonal and size[1] % 2 == 1:
221
            raise ValueError(("Can't make orthorhombic cell with size=%r.  " %
222
                              (tuple(size),)) +
223
                             'Second number in size must be even.')
224
        if surf == 'fcc111':
225
            cell = (sqrt(0.5), sqrt(0.375), 1 / sqrt(3))
226
            if orthogonal:
227
                positions[-1::-3, 1::2, :, 0] += 0.5
228
                positions[-2::-3, 1::2, :, 0] += 0.5
229
                positions[-3::-3, 1::2, :, 0] -= 0.5
230
                positions[-2::-3, ..., :2] += (0.0, 2.0 / 3)
231
                positions[-3::-3, ..., :2] += (0.5, 1.0 / 3)
232
            else:
233
                positions[-2::-3, ..., :2] += (-1.0 / 3, 2.0 / 3)
234
                positions[-3::-3, ..., :2] += (1.0 / 3, 1.0 / 3)
235
            sites.update({'bridge': (0.5, 0), 'fcc': (1.0 / 3, 1.0 / 3),
236
                          'hcp': (2.0 / 3, 2.0 / 3)})
237
        elif surf == 'hcp0001':
238
            cell = (1.0, sqrt(0.75), 0.5 * c / a)
239
            if orthogonal:
240
                positions[:, 1::2, :, 0] += 0.5
241
                positions[-2::-2, ..., :2] += (0.0, 2.0 / 3)
242
            else:
243
                positions[-2::-2, ..., :2] += (-1.0 / 3, 2.0 / 3)
244
            sites.update({'bridge': (0.5, 0), 'fcc': (1.0 / 3, 1.0 / 3),
245
                          'hcp': (2.0 / 3, 2.0 / 3)})
246
        elif surf == 'bcc110':
247
            cell = (1.0, sqrt(0.5), sqrt(0.5))
248
            if orthogonal:
249
                positions[:, 1::2, :, 0] += 0.5
250
                positions[-2::-2, ..., :2] += (0.0, 1.0)
251
            else:
252
                positions[-2::-2, ..., :2] += (-0.5, 1.0)
253
            sites.update({'shortbridge': (0, 0.5),
254
                          'longbridge': (0.5, 0),
255
                          'hollow': (0.375, 0.25)})
256
        elif surf == 'bcc111':
257
            cell = (sqrt(2), sqrt(1.5), sqrt(3) / 6)
258
            if orthogonal:
259
                positions[-1::-3, 1::2, :, 0] += 0.5
260
                positions[-2::-3, 1::2, :, 0] += 0.5
261
                positions[-3::-3, 1::2, :, 0] -= 0.5
262
                positions[-2::-3, ..., :2] += (0.0, 2.0 / 3)
263
                positions[-3::-3, ..., :2] += (0.5, 1.0 / 3)
264
            else:
265
                positions[-2::-3, ..., :2] += (-1.0 / 3, 2.0 / 3)
266
                positions[-3::-3, ..., :2] += (1.0 / 3, 1.0 / 3)
267
            sites.update({'hollow': (1.0 / 3, 1.0 / 3)})
268
            
269
        surface_cell = a * np.array([(cell[0], 0),
270
                                     (cell[0] / 2, cell[1])])
271
        if not orthogonal:
272
            cell = np.array([(cell[0], 0, 0),
273
                             (cell[0] / 2, cell[1], 0),
274
                             (0, 0, cell[2])])
275

    
276
    if surface_cell is None:
277
        surface_cell = a * np.diag(cell[:2])
278

    
279
    if isinstance(cell, tuple):
280
        cell = np.diag(cell)
281
        
282
    slab.set_positions(positions.reshape((-1, 3)))
283

    
284
    slab.set_cell([a * v * n for v, n in zip(cell, size)], scale_atoms=True)
285

    
286
    if vacuum is not None:
287
        slab.center(vacuum=vacuum, axis=2)
288
    
289
    slab.adsorbate_info['cell'] = surface_cell
290
    slab.adsorbate_info['sites'] = sites
291
    
292
    return slab
293

    
294
    
295