root / ase / lattice / surface.py @ 15
Historique | Voir | Annoter | Télécharger (10,52 ko)
1 | 1 | tkerber | """Helper functions for creating the most common surfaces and related tasks.
|
---|---|---|---|
2 | 1 | tkerber |
|
3 | 1 | tkerber | The helper functions can create the most common low-index surfaces,
|
4 | 1 | tkerber | add vacuum layers and add adsorbates.
|
5 | 1 | tkerber |
|
6 | 1 | tkerber | """
|
7 | 1 | tkerber | |
8 | 1 | tkerber | from math import sqrt |
9 | 1 | tkerber | |
10 | 1 | tkerber | import numpy as np |
11 | 1 | tkerber | |
12 | 1 | tkerber | from ase.atom import Atom |
13 | 1 | tkerber | from ase.atoms import Atoms |
14 | 1 | tkerber | from ase.data import reference_states, atomic_numbers |
15 | 1 | tkerber | |
16 | 1 | tkerber | |
17 | 1 | tkerber | def fcc100(symbol, size, a=None, vacuum=None): |
18 | 1 | tkerber | """FCC(100) surface.
|
19 | 1 | tkerber |
|
20 | 1 | tkerber | Supported special adsorption sites: 'ontop', 'bridge', 'hollow'."""
|
21 | 1 | tkerber | return surface(symbol, 'fcc', '100', size, a, None, vacuum) |
22 | 1 | tkerber | |
23 | 1 | tkerber | def fcc110(symbol, size, a=None, vacuum=None): |
24 | 1 | tkerber | """FCC(110) surface.
|
25 | 1 | tkerber |
|
26 | 1 | tkerber | Supported special adsorption sites: 'ontop', 'longbridge',
|
27 | 1 | tkerber | 'shortbridge','hollow'."""
|
28 | 1 | tkerber | return surface(symbol, 'fcc', '110', size, a, None, vacuum) |
29 | 1 | tkerber | |
30 | 1 | tkerber | def bcc100(symbol, size, a=None, vacuum=None): |
31 | 1 | tkerber | """BCC(100) surface.
|
32 | 1 | tkerber |
|
33 | 1 | tkerber | Supported special adsorption sites: 'ontop', 'bridge', 'hollow'."""
|
34 | 1 | tkerber | return surface(symbol, 'bcc', '100', size, a, None, vacuum) |
35 | 1 | tkerber | |
36 | 1 | tkerber | def bcc110(symbol, size, a=None, vacuum=None, orthogonal=False): |
37 | 1 | tkerber | """BCC(110) surface.
|
38 | 1 | tkerber |
|
39 | 1 | tkerber | Supported special adsorption sites: 'ontop', 'longbridge',
|
40 | 1 | tkerber | 'shortbridge', 'hollow'.
|
41 | 1 | tkerber |
|
42 | 1 | tkerber | Use *orthogonal=True* to get an orthogonal unit cell - works only
|
43 | 1 | tkerber | for size=(i,j,k) with j even."""
|
44 | 1 | tkerber | return surface(symbol, 'bcc', '110', size, a, None, vacuum, orthogonal) |
45 | 1 | tkerber | |
46 | 1 | tkerber | def bcc111(symbol, size, a=None, vacuum=None, orthogonal=False): |
47 | 1 | tkerber | """BCC(111) surface.
|
48 | 1 | tkerber |
|
49 | 1 | tkerber | Supported special adsorption sites: 'ontop'.
|
50 | 1 | tkerber |
|
51 | 1 | tkerber | Use *orthogonal=True* to get an orthogonal unit cell - works only
|
52 | 1 | tkerber | for size=(i,j,k) with j even."""
|
53 | 1 | tkerber | return surface(symbol, 'bcc', '111', size, a, None, vacuum, orthogonal) |
54 | 1 | tkerber | |
55 | 1 | tkerber | def fcc111(symbol, size, a=None, vacuum=None, orthogonal=False): |
56 | 1 | tkerber | """FCC(111) surface.
|
57 | 1 | tkerber |
|
58 | 1 | tkerber | Supported special adsorption sites: 'ontop', 'bridge', 'fcc' and 'hcp'.
|
59 | 1 | tkerber |
|
60 | 1 | tkerber | Use *orthogonal=True* to get an orthogonal unit cell - works only
|
61 | 1 | tkerber | for size=(i,j,k) with j even."""
|
62 | 1 | tkerber | return surface(symbol, 'fcc', '111', size, a, None, vacuum, orthogonal) |
63 | 1 | tkerber | |
64 | 1 | tkerber | def hcp0001(symbol, size, a=None, c=None, vacuum=None, orthogonal=False): |
65 | 1 | tkerber | """HCP(0001) surface.
|
66 | 1 | tkerber |
|
67 | 1 | tkerber | Supported special adsorption sites: 'ontop', 'bridge', 'fcc' and 'hcp'.
|
68 | 1 | tkerber |
|
69 | 1 | tkerber | Use *orthogonal=True* to get an orthogonal unit cell - works only
|
70 | 1 | tkerber | for size=(i,j,k) with j even."""
|
71 | 1 | tkerber | return surface(symbol, 'hcp', '0001', size, a, c, vacuum, orthogonal) |
72 | 1 | tkerber | |
73 | 1 | tkerber | |
74 | 1 | tkerber | def add_adsorbate(slab, adsorbate, height, position=(0, 0), offset=None, |
75 | 1 | tkerber | mol_index=0):
|
76 | 1 | tkerber | """Add an adsorbate to a surface.
|
77 | 1 | tkerber |
|
78 | 1 | tkerber | This function adds an adsorbate to a slab. If the slab is
|
79 | 1 | tkerber | produced by one of the utility functions in ase.lattice.surface, it
|
80 | 1 | tkerber | is possible to specify the position of the adsorbate by a keyword
|
81 | 1 | tkerber | (the supported keywords depend on which function was used to
|
82 | 1 | tkerber | create the slab).
|
83 | 1 | tkerber |
|
84 | 1 | tkerber | If the adsorbate is a molecule, the atom indexed by the mol_index
|
85 | 1 | tkerber | optional argument is positioned on top of the adsorption position
|
86 | 1 | tkerber | on the surface, and it is the responsibility of the user to orient
|
87 | 1 | tkerber | the adsorbate in a sensible way.
|
88 | 1 | tkerber |
|
89 | 1 | tkerber | This function can be called multiple times to add more than one
|
90 | 1 | tkerber | adsorbate.
|
91 | 1 | tkerber |
|
92 | 1 | tkerber | Parameters:
|
93 | 1 | tkerber |
|
94 | 1 | tkerber | slab: The surface onto which the adsorbate should be added.
|
95 | 1 | tkerber |
|
96 | 1 | tkerber | adsorbate: The adsorbate. Must be one of the following three types:
|
97 | 1 | tkerber | A string containing the chemical symbol for a single atom.
|
98 | 1 | tkerber | An atom object.
|
99 | 1 | tkerber | An atoms object (for a molecular adsorbate).
|
100 | 1 | tkerber |
|
101 | 1 | tkerber | height: Height above the surface.
|
102 | 1 | tkerber |
|
103 | 1 | tkerber | position: The x-y position of the adsorbate, either as a tuple of
|
104 | 1 | tkerber | two numbers or as a keyword (if the surface is produced by one
|
105 | 1 | tkerber | of the functions in ase.lattice.surfaces).
|
106 | 1 | tkerber |
|
107 | 1 | tkerber | offset (default: None): Offsets the adsorbate by a number of unit
|
108 | 1 | tkerber | cells. Mostly useful when adding more than one adsorbate.
|
109 | 1 | tkerber |
|
110 | 1 | tkerber | mol_index (default: 0): If the adsorbate is a molecule, index of
|
111 | 1 | tkerber | the atom to be positioned above the location specified by the
|
112 | 1 | tkerber | position argument.
|
113 | 1 | tkerber |
|
114 | 1 | tkerber | Note *position* is given in absolute xy coordinates (or as
|
115 | 1 | tkerber | a keyword), whereas offset is specified in unit cells. This
|
116 | 1 | tkerber | can be used to give the positions in units of the unit cell by
|
117 | 1 | tkerber | using *offset* instead.
|
118 | 1 | tkerber |
|
119 | 1 | tkerber | """
|
120 | 1 | tkerber | info = slab.adsorbate_info |
121 | 1 | tkerber | if 'cell' not in info: |
122 | 1 | tkerber | info['cell'] = slab.get_cell()[:2,:2] |
123 | 1 | tkerber | |
124 | 1 | tkerber | |
125 | 1 | tkerber | pos = np.array([0.0, 0.0]) # (x, y) part |
126 | 1 | tkerber | spos = np.array([0.0, 0.0]) # part relative to unit cell |
127 | 1 | tkerber | if offset is not None: |
128 | 1 | tkerber | spos += np.asarray(offset, float)
|
129 | 1 | tkerber | |
130 | 1 | tkerber | if isinstance(position, str): |
131 | 1 | tkerber | # A site-name:
|
132 | 1 | tkerber | if 'sites' not in info: |
133 | 1 | tkerber | raise TypeError('If the atoms are not made by an ' + |
134 | 1 | tkerber | 'ase.lattice.surface function, ' +
|
135 | 1 | tkerber | 'position cannot be a name.')
|
136 | 1 | tkerber | if position not in info['sites']: |
137 | 1 | tkerber | raise TypeError('Adsorption site %s not supported.' % position) |
138 | 1 | tkerber | spos += info['sites'][position]
|
139 | 1 | tkerber | else:
|
140 | 1 | tkerber | pos += position |
141 | 1 | tkerber | |
142 | 1 | tkerber | pos += np.dot(spos, info['cell'])
|
143 | 1 | tkerber | |
144 | 1 | tkerber | # Convert the adsorbate to an Atoms object
|
145 | 1 | tkerber | if isinstance(adsorbate, Atoms): |
146 | 1 | tkerber | ads = adsorbate |
147 | 1 | tkerber | elif isinstance(adsorbate, Atom): |
148 | 1 | tkerber | ads = Atoms([adsorbate]) |
149 | 1 | tkerber | else:
|
150 | 1 | tkerber | # Hope it is a useful string or something like that
|
151 | 1 | tkerber | ads = Atoms(adsorbate) |
152 | 1 | tkerber | |
153 | 1 | tkerber | # Get the z-coordinate:
|
154 | 1 | tkerber | try:
|
155 | 1 | tkerber | a = info['top layer atom index']
|
156 | 1 | tkerber | except KeyError: |
157 | 1 | tkerber | a = slab.positions[:, 2].argmax()
|
158 | 1 | tkerber | info['top layer atom index']= a
|
159 | 1 | tkerber | z = slab.positions[a, 2] + height
|
160 | 1 | tkerber | |
161 | 1 | tkerber | # Move adsorbate into position
|
162 | 1 | tkerber | ads.translate([pos[0], pos[1], z] - ads.positions[mol_index]) |
163 | 1 | tkerber | |
164 | 1 | tkerber | # Attach the adsorbate
|
165 | 1 | tkerber | slab.extend(ads) |
166 | 1 | tkerber | |
167 | 1 | tkerber | |
168 | 1 | tkerber | def surface(symbol, structure, face, size, a, c, vacuum, orthogonal=True): |
169 | 1 | tkerber | """Function to build often used surfaces.
|
170 | 1 | tkerber |
|
171 | 1 | tkerber | Don't call this function directly - use fcc100, fcc110, bcc111, ..."""
|
172 | 1 | tkerber | |
173 | 1 | tkerber | Z = atomic_numbers[symbol] |
174 | 1 | tkerber | |
175 | 1 | tkerber | if a is None: |
176 | 1 | tkerber | sym = reference_states[Z]['symmetry'].lower()
|
177 | 1 | tkerber | if sym != structure:
|
178 | 1 | tkerber | raise ValueError("Can't guess lattice constant for %s-%s!" % |
179 | 1 | tkerber | (structure, symbol)) |
180 | 1 | tkerber | a = reference_states[Z]['a']
|
181 | 1 | tkerber | |
182 | 1 | tkerber | if structure == 'hcp' and c is None: |
183 | 1 | tkerber | if reference_states[Z]['symmetry'].lower() == 'hcp': |
184 | 1 | tkerber | c = reference_states[Z]['c/a'] * a
|
185 | 1 | tkerber | else:
|
186 | 1 | tkerber | c = sqrt(8 / 3.0) * a |
187 | 1 | tkerber | |
188 | 1 | tkerber | positions = np.empty((size[2], size[1], size[0], 3)) |
189 | 1 | tkerber | positions[..., 0] = np.arange(size[0]).reshape((1, 1, -1)) |
190 | 1 | tkerber | positions[..., 1] = np.arange(size[1]).reshape((1, -1, 1)) |
191 | 1 | tkerber | positions[..., 2] = np.arange(size[2]).reshape((-1, 1, 1)) |
192 | 1 | tkerber | |
193 | 1 | tkerber | numbers = np.ones(size[0] * size[1] * size[2], int) * Z |
194 | 1 | tkerber | |
195 | 1 | tkerber | tags = np.empty((size[2], size[1], size[0]), int) |
196 | 1 | tkerber | tags[:] = np.arange(size[2], 0, -1).reshape((-1, 1, 1)) |
197 | 1 | tkerber | |
198 | 1 | tkerber | slab = Atoms(numbers, |
199 | 1 | tkerber | tags=tags.ravel(), |
200 | 1 | tkerber | pbc=(True, True, False), |
201 | 1 | tkerber | cell=size) |
202 | 1 | tkerber | |
203 | 1 | tkerber | surface_cell = None
|
204 | 1 | tkerber | sites = {'ontop': (0, 0)} |
205 | 1 | tkerber | surf = structure + face |
206 | 1 | tkerber | if surf == 'fcc100': |
207 | 1 | tkerber | cell = (sqrt(0.5), sqrt(0.5), 0.5) |
208 | 1 | tkerber | positions[-2::-2, ..., :2] += 0.5 |
209 | 1 | tkerber | sites.update({'hollow': (0.5, 0.5), 'bridge': (0.5, 0)}) |
210 | 1 | tkerber | elif surf == 'fcc110': |
211 | 1 | tkerber | cell = (1.0, sqrt(0.5), sqrt(0.125)) |
212 | 1 | tkerber | positions[-2::-2, ..., :2] += 0.5 |
213 | 1 | tkerber | sites.update({'hollow': (0.5, 0.5), 'longbridge': (0.5, 0), |
214 | 1 | tkerber | 'shortbridge': (0, 0.5)}) |
215 | 1 | tkerber | elif surf == 'bcc100': |
216 | 1 | tkerber | cell = (1.0, 1.0, 0.5) |
217 | 1 | tkerber | positions[-2::-2, ..., :2] += 0.5 |
218 | 1 | tkerber | sites.update({'hollow': (0.5, 0.5), 'bridge': (0.5, 0)}) |
219 | 1 | tkerber | else:
|
220 | 1 | tkerber | if orthogonal and size[1] % 2 == 1: |
221 | 1 | tkerber | raise ValueError(("Can't make orthorhombic cell with size=%r. " % |
222 | 1 | tkerber | (tuple(size),)) +
|
223 | 1 | tkerber | 'Second number in size must be even.')
|
224 | 1 | tkerber | if surf == 'fcc111': |
225 | 1 | tkerber | cell = (sqrt(0.5), sqrt(0.375), 1 / sqrt(3)) |
226 | 1 | tkerber | if orthogonal:
|
227 | 1 | tkerber | positions[-1::-3, 1::2, :, 0] += 0.5 |
228 | 1 | tkerber | positions[-2::-3, 1::2, :, 0] += 0.5 |
229 | 1 | tkerber | positions[-3::-3, 1::2, :, 0] -= 0.5 |
230 | 1 | tkerber | positions[-2::-3, ..., :2] += (0.0, 2.0 / 3) |
231 | 1 | tkerber | positions[-3::-3, ..., :2] += (0.5, 1.0 / 3) |
232 | 1 | tkerber | else:
|
233 | 1 | tkerber | positions[-2::-3, ..., :2] += (-1.0 / 3, 2.0 / 3) |
234 | 1 | tkerber | positions[-3::-3, ..., :2] += (1.0 / 3, 1.0 / 3) |
235 | 1 | tkerber | sites.update({'bridge': (0.5, 0), 'fcc': (1.0 / 3, 1.0 / 3), |
236 | 1 | tkerber | 'hcp': (2.0 / 3, 2.0 / 3)}) |
237 | 1 | tkerber | elif surf == 'hcp0001': |
238 | 1 | tkerber | cell = (1.0, sqrt(0.75), 0.5 * c / a) |
239 | 1 | tkerber | if orthogonal:
|
240 | 1 | tkerber | positions[:, 1::2, :, 0] += 0.5 |
241 | 1 | tkerber | positions[-2::-2, ..., :2] += (0.0, 2.0 / 3) |
242 | 1 | tkerber | else:
|
243 | 1 | tkerber | positions[-2::-2, ..., :2] += (-1.0 / 3, 2.0 / 3) |
244 | 1 | tkerber | sites.update({'bridge': (0.5, 0), 'fcc': (1.0 / 3, 1.0 / 3), |
245 | 1 | tkerber | 'hcp': (2.0 / 3, 2.0 / 3)}) |
246 | 1 | tkerber | elif surf == 'bcc110': |
247 | 1 | tkerber | cell = (1.0, sqrt(0.5), sqrt(0.5)) |
248 | 1 | tkerber | if orthogonal:
|
249 | 1 | tkerber | positions[:, 1::2, :, 0] += 0.5 |
250 | 1 | tkerber | positions[-2::-2, ..., :2] += (0.0, 1.0) |
251 | 1 | tkerber | else:
|
252 | 1 | tkerber | positions[-2::-2, ..., :2] += (-0.5, 1.0) |
253 | 1 | tkerber | sites.update({'shortbridge': (0, 0.5), |
254 | 1 | tkerber | 'longbridge': (0.5, 0), |
255 | 1 | tkerber | 'hollow': (0.375, 0.25)}) |
256 | 1 | tkerber | elif surf == 'bcc111': |
257 | 1 | tkerber | cell = (sqrt(2), sqrt(1.5), sqrt(3) / 6) |
258 | 1 | tkerber | if orthogonal:
|
259 | 1 | tkerber | positions[-1::-3, 1::2, :, 0] += 0.5 |
260 | 1 | tkerber | positions[-2::-3, 1::2, :, 0] += 0.5 |
261 | 1 | tkerber | positions[-3::-3, 1::2, :, 0] -= 0.5 |
262 | 1 | tkerber | positions[-2::-3, ..., :2] += (0.0, 2.0 / 3) |
263 | 1 | tkerber | positions[-3::-3, ..., :2] += (0.5, 1.0 / 3) |
264 | 1 | tkerber | else:
|
265 | 1 | tkerber | positions[-2::-3, ..., :2] += (-1.0 / 3, 2.0 / 3) |
266 | 1 | tkerber | positions[-3::-3, ..., :2] += (1.0 / 3, 1.0 / 3) |
267 | 1 | tkerber | sites.update({'hollow': (1.0 / 3, 1.0 / 3)}) |
268 | 1 | tkerber | |
269 | 1 | tkerber | surface_cell = a * np.array([(cell[0], 0), |
270 | 1 | tkerber | (cell[0] / 2, cell[1])]) |
271 | 1 | tkerber | if not orthogonal: |
272 | 1 | tkerber | cell = np.array([(cell[0], 0, 0), |
273 | 1 | tkerber | (cell[0] / 2, cell[1], 0), |
274 | 1 | tkerber | (0, 0, cell[2])]) |
275 | 1 | tkerber | |
276 | 1 | tkerber | if surface_cell is None: |
277 | 1 | tkerber | surface_cell = a * np.diag(cell[:2])
|
278 | 1 | tkerber | |
279 | 1 | tkerber | if isinstance(cell, tuple): |
280 | 1 | tkerber | cell = np.diag(cell) |
281 | 1 | tkerber | |
282 | 1 | tkerber | slab.set_positions(positions.reshape((-1, 3))) |
283 | 1 | tkerber | |
284 | 1 | tkerber | slab.set_cell([a * v * n for v, n in zip(cell, size)], scale_atoms=True) |
285 | 1 | tkerber | |
286 | 1 | tkerber | if vacuum is not None: |
287 | 1 | tkerber | slab.center(vacuum=vacuum, axis=2)
|
288 | 1 | tkerber | |
289 | 1 | tkerber | slab.adsorbate_info['cell'] = surface_cell
|
290 | 1 | tkerber | slab.adsorbate_info['sites'] = sites
|
291 | 1 | tkerber | |
292 | 1 | tkerber | return slab
|
293 | 1 | tkerber | |
294 | 1 | tkerber |