root / ase / optimize / optimize.py @ 14
Historique | Voir | Annoter | Télécharger (5,59 ko)
| 1 |
"""Structure optimization. """
|
|---|---|
| 2 |
|
| 3 |
import sys |
| 4 |
import pickle |
| 5 |
import time |
| 6 |
from math import sqrt |
| 7 |
from os.path import isfile |
| 8 |
|
| 9 |
import numpy as np |
| 10 |
|
| 11 |
from ase.parallel import rank, barrier |
| 12 |
from ase.io.trajectory import PickleTrajectory |
| 13 |
|
| 14 |
|
| 15 |
class Dynamics: |
| 16 |
"""Base-class for all MD and structure optimization classes.
|
| 17 |
|
| 18 |
Dynamics(atoms, logfile)
|
| 19 |
|
| 20 |
atoms: Atoms object
|
| 21 |
The Atoms object to operate on
|
| 22 |
logfile: file object or str
|
| 23 |
If *logfile* is a string, a file with that name will be opened.
|
| 24 |
Use '-' for stdout.
|
| 25 |
trajectory: Trajectory object or str
|
| 26 |
Attach trajectory object. If *trajectory* is a string a
|
| 27 |
PickleTrajectory will be constructed. Use *None* for no
|
| 28 |
trajectory.
|
| 29 |
"""
|
| 30 |
def __init__(self, atoms, logfile, trajectory): |
| 31 |
self.atoms = atoms
|
| 32 |
|
| 33 |
if rank != 0: |
| 34 |
logfile = None
|
| 35 |
elif isinstance(logfile, str): |
| 36 |
if logfile == '-': |
| 37 |
logfile = sys.stdout |
| 38 |
else:
|
| 39 |
logfile = open(logfile, 'a') |
| 40 |
self.logfile = logfile
|
| 41 |
|
| 42 |
self.observers = []
|
| 43 |
self.nsteps = 0 |
| 44 |
|
| 45 |
if trajectory is not None: |
| 46 |
if isinstance(trajectory, str): |
| 47 |
trajectory = PickleTrajectory(trajectory, 'w', atoms)
|
| 48 |
self.attach(trajectory)
|
| 49 |
|
| 50 |
def get_number_of_steps(self): |
| 51 |
return self.nsteps |
| 52 |
|
| 53 |
def insert_observer(self, function, position=0, interval=1, |
| 54 |
*args, **kwargs): |
| 55 |
"""Insert an observer."""
|
| 56 |
if not callable(function): |
| 57 |
function = function.write |
| 58 |
self.observers.insert(position, (function, interval, args, kwargs))
|
| 59 |
|
| 60 |
def attach(self, function, interval=1, *args, **kwargs): |
| 61 |
"""Attach callback function.
|
| 62 |
|
| 63 |
At every *interval* steps, call *function* with arguments
|
| 64 |
*args* and keyword arguments *kwargs*."""
|
| 65 |
|
| 66 |
if not hasattr(function, '__call__'): |
| 67 |
function = function.write |
| 68 |
self.observers.append((function, interval, args, kwargs))
|
| 69 |
|
| 70 |
def call_observers(self): |
| 71 |
for function, interval, args, kwargs in self.observers: |
| 72 |
if self.nsteps % interval == 0: |
| 73 |
function(*args, **kwargs) |
| 74 |
|
| 75 |
|
| 76 |
class Optimizer(Dynamics): |
| 77 |
"""Base-class for all structure optimization classes."""
|
| 78 |
def __init__(self, atoms, restart, logfile, trajectory): |
| 79 |
"""Structure optimizer object.
|
| 80 |
|
| 81 |
atoms: Atoms object
|
| 82 |
The Atoms object to relax.
|
| 83 |
restart: str
|
| 84 |
Filename for restart file. Default value is *None*.
|
| 85 |
logfile: file object or str
|
| 86 |
If *logfile* is a string, a file with that name will be opened.
|
| 87 |
Use '-' for stdout.
|
| 88 |
trajectory: Trajectory object or str
|
| 89 |
Attach trajectory object. If *trajectory* is a string a
|
| 90 |
PickleTrajectory will be constructed. Use *None* for no
|
| 91 |
trajectory.
|
| 92 |
"""
|
| 93 |
Dynamics.__init__(self, atoms, logfile, trajectory)
|
| 94 |
self.restart = restart
|
| 95 |
|
| 96 |
if restart is None or not isfile(restart): |
| 97 |
self.initialize()
|
| 98 |
else:
|
| 99 |
self.read()
|
| 100 |
barrier() |
| 101 |
def initialize(self): |
| 102 |
pass
|
| 103 |
|
| 104 |
def run(self, fmax=0.05, steps=100000000): |
| 105 |
"""Run structure optimization algorithm.
|
| 106 |
|
| 107 |
This method will return when the forces on all individual
|
| 108 |
atoms are less than *fmax* or when the number of steps exceeds
|
| 109 |
*steps*."""
|
| 110 |
|
| 111 |
self.fmax = fmax
|
| 112 |
step = 0
|
| 113 |
while step < steps:
|
| 114 |
f = self.atoms.get_forces()
|
| 115 |
self.log(f)
|
| 116 |
self.call_observers()
|
| 117 |
if self.converged(f): |
| 118 |
return
|
| 119 |
self.step(f)
|
| 120 |
self.nsteps += 1 |
| 121 |
step += 1
|
| 122 |
|
| 123 |
def converged(self, forces=None): |
| 124 |
"""Did the optimization converge?"""
|
| 125 |
if forces is None: |
| 126 |
forces = self.atoms.get_forces()
|
| 127 |
return (forces**2).sum(axis=1).max() < self.fmax**2 |
| 128 |
|
| 129 |
def log(self, forces): |
| 130 |
fmax = sqrt((forces**2).sum(axis=1).max()) |
| 131 |
e = self.atoms.get_potential_energy()
|
| 132 |
T = time.localtime() |
| 133 |
if self.logfile is not None: |
| 134 |
name = self.__class__.__name__
|
| 135 |
self.logfile.write('%s: %3d %02d:%02d:%02d %15.6f %12.4f\n' % |
| 136 |
(name, self.nsteps, T[3], T[4], T[5], e, fmax)) |
| 137 |
self.logfile.flush()
|
| 138 |
|
| 139 |
def dump(self, data): |
| 140 |
if rank == 0 and self.restart is not None: |
| 141 |
pickle.dump(data, open(self.restart, 'wb'), protocol=2) |
| 142 |
|
| 143 |
def load(self): |
| 144 |
return pickle.load(open(self.restart)) |
| 145 |
|
| 146 |
|
| 147 |
class NDPoly: |
| 148 |
def __init__(self, ndims=1, order=3): |
| 149 |
"""Multivariate polynomium.
|
| 150 |
|
| 151 |
ndims: int
|
| 152 |
Number of dimensions.
|
| 153 |
order: int
|
| 154 |
Order of polynomium."""
|
| 155 |
|
| 156 |
if ndims == 0: |
| 157 |
exponents = [()] |
| 158 |
else:
|
| 159 |
exponents = [] |
| 160 |
for i in range(order + 1): |
| 161 |
E = NDPoly(ndims - 1, order - i).exponents
|
| 162 |
exponents += [(i,) + tuple(e) for e in E] |
| 163 |
self.exponents = np.array(exponents)
|
| 164 |
self.c = None |
| 165 |
|
| 166 |
def __call__(self, *x): |
| 167 |
"""Evaluate polynomial at x."""
|
| 168 |
return np.dot(self.c, (x**self.exponents).prod(1)) |
| 169 |
|
| 170 |
def fit(self, x, y): |
| 171 |
"""Fit polynomium at points in x to values in y."""
|
| 172 |
A = (x**self.exponents[:, np.newaxis]).prod(2) |
| 173 |
self.c = np.linalg.solve(np.inner(A, A), np.dot(A, y))
|
| 174 |
|
| 175 |
|
| 176 |
def polyfit(x, y, order=3): |
| 177 |
"""Fit polynomium at points in x to values in y.
|
| 178 |
|
| 179 |
With D dimensions and N points, x must have shape (N, D) and y
|
| 180 |
must have length N."""
|
| 181 |
|
| 182 |
p = NDPoly(len(x[0]), order) |
| 183 |
p.fit(x, y) |
| 184 |
return p
|