root / ase / optimize / oldqn.py @ 14
Historique | Voir | Annoter | Télécharger (14,44 ko)
| 1 |
# Copyright (C) 2003 CAMP
|
|---|---|
| 2 |
# Please see the accompanying LICENSE file for further information.
|
| 3 |
|
| 4 |
"""
|
| 5 |
Quasi-Newton algorithm
|
| 6 |
"""
|
| 7 |
|
| 8 |
__docformat__ = 'reStructuredText'
|
| 9 |
|
| 10 |
import numpy as np |
| 11 |
import weakref,time,sys |
| 12 |
|
| 13 |
|
| 14 |
def f(lamda,Gbar,b,radius): |
| 15 |
b1 = b - lamda |
| 16 |
g = radius**2 - np.dot(Gbar/b1, Gbar/b1)
|
| 17 |
return g
|
| 18 |
|
| 19 |
|
| 20 |
|
| 21 |
def scale_radius_energy(f,r): |
| 22 |
scale = 1.0
|
| 23 |
# if(r<=0.01):
|
| 24 |
# return scale
|
| 25 |
|
| 26 |
if f<0.01: scale*=1.4 |
| 27 |
if f<0.05: scale*=1.4 |
| 28 |
if f<0.10: scale*=1.4 |
| 29 |
if f<0.40: scale*=1.4 |
| 30 |
|
| 31 |
if f>0.5: scale *= 1./1.4 |
| 32 |
if f>0.7: scale *= 1./1.4 |
| 33 |
if f>1.0: scale *= 1./1.4 |
| 34 |
|
| 35 |
return scale
|
| 36 |
|
| 37 |
def scale_radius_force(f,r): |
| 38 |
scale = 1.0
|
| 39 |
# if(r<=0.01):
|
| 40 |
# return scale
|
| 41 |
g = abs(f -1) |
| 42 |
if g<0.01: scale*=1.4 |
| 43 |
if g<0.05: scale*=1.4 |
| 44 |
if g<0.10: scale*=1.4 |
| 45 |
if g<0.40: scale*=1.4 |
| 46 |
|
| 47 |
if g>0.5: scale *= 1./1.4 |
| 48 |
if g>0.7: scale *= 1./1.4 |
| 49 |
if g>1.0: scale *= 1./1.4 |
| 50 |
|
| 51 |
return scale
|
| 52 |
|
| 53 |
def find_lamda(upperlimit,Gbar,b,radius): |
| 54 |
lowerlimit = upperlimit |
| 55 |
eps = 1e-12
|
| 56 |
step = 0.1
|
| 57 |
while f(lowerlimit,Gbar,b,radius) < 0: |
| 58 |
lowerlimit -= step |
| 59 |
|
| 60 |
converged = False
|
| 61 |
|
| 62 |
while not converged: |
| 63 |
|
| 64 |
midt = (upperlimit+lowerlimit)/2.
|
| 65 |
lamda = midt |
| 66 |
fmidt = f(midt,Gbar,b,radius) |
| 67 |
fupper = f(upperlimit,Gbar,b,radius) |
| 68 |
flower = f(lowerlimit,Gbar,b,radius) |
| 69 |
|
| 70 |
if fupper*fmidt<0: |
| 71 |
lowerlimit = midt |
| 72 |
else:
|
| 73 |
upperlimit = midt |
| 74 |
|
| 75 |
if abs(upperlimit-lowerlimit)<1e-6: |
| 76 |
converged = True
|
| 77 |
|
| 78 |
return lamda
|
| 79 |
|
| 80 |
def get_hessian_inertia(eigenvalues): |
| 81 |
# return number of negative modes
|
| 82 |
n = 0
|
| 83 |
print 'eigenvalues ',eigenvalues[0],eigenvalues[1],eigenvalues[2] |
| 84 |
while eigenvalues[n]<0: |
| 85 |
n+=1
|
| 86 |
return n
|
| 87 |
|
| 88 |
|
| 89 |
from numpy.linalg import eigh, solve |
| 90 |
|
| 91 |
from ase.optimize.optimize import Optimizer |
| 92 |
|
| 93 |
|
| 94 |
|
| 95 |
class GoodOldQuasiNewton(Optimizer): |
| 96 |
|
| 97 |
def __init__(self, atoms, restart=None, logfile='-', trajectory=None, |
| 98 |
fmax=None, converged=None, |
| 99 |
hessianupdate='BFGS',hessian=None,forcemin=True, |
| 100 |
verbosity=None,maxradius=None, |
| 101 |
diagonal=20.,radius=None, |
| 102 |
transitionstate = False):
|
| 103 |
|
| 104 |
Optimizer.__init__(self, atoms, restart, logfile, trajectory)
|
| 105 |
|
| 106 |
self.eps = 1e-12 |
| 107 |
self.hessianupdate = hessianupdate
|
| 108 |
self.forcemin = forcemin
|
| 109 |
self.verbosity = verbosity
|
| 110 |
self.diagonal = diagonal
|
| 111 |
|
| 112 |
self.atoms = atoms
|
| 113 |
|
| 114 |
n = len(self.atoms) * 3 |
| 115 |
if radius is None: |
| 116 |
self.radius = 0.05*np.sqrt(n)/10.0 |
| 117 |
else:
|
| 118 |
self.radius = radius
|
| 119 |
|
| 120 |
if maxradius is None: |
| 121 |
self.maxradius = 0.5*np.sqrt(n) |
| 122 |
else:
|
| 123 |
self.maxradius = maxradius
|
| 124 |
|
| 125 |
# 0.01 < radius < maxradius
|
| 126 |
self.radius = max(min( self.radius, self.maxradius ), 0.0001) |
| 127 |
|
| 128 |
self.transitionstate = transitionstate
|
| 129 |
|
| 130 |
# check if this is a nudged elastic band calculation
|
| 131 |
if hasattr(atoms,'springconstant'): |
| 132 |
self.forcemin=False |
| 133 |
|
| 134 |
self.t0 = time.time()
|
| 135 |
|
| 136 |
def initialize(self):pass |
| 137 |
|
| 138 |
def write_log(self,text): |
| 139 |
if self.logfile is not None: |
| 140 |
self.logfile.write(text + '\n') |
| 141 |
self.logfile.flush()
|
| 142 |
|
| 143 |
def set_max_radius(self, maxradius): |
| 144 |
self.maxradius = maxradius
|
| 145 |
self.radius = min(self.maxradius, self.radius) |
| 146 |
|
| 147 |
def set_hessian(self,hessian): |
| 148 |
self.hessian = hessian
|
| 149 |
|
| 150 |
def get_hessian(self): |
| 151 |
if not hasattr(self,'hessian'): |
| 152 |
self.set_default_hessian()
|
| 153 |
return self.hessian |
| 154 |
|
| 155 |
def set_default_hessian(self): |
| 156 |
# set unit matrix
|
| 157 |
n = len(self.atoms) * 3 |
| 158 |
hessian = np.zeros((n,n)) |
| 159 |
for i in range(n): |
| 160 |
hessian[i][i] = self.diagonal
|
| 161 |
self.set_hessian(hessian)
|
| 162 |
|
| 163 |
def read_hessian(self,filename): |
| 164 |
import cPickle |
| 165 |
f = open(filename,'r') |
| 166 |
self.set_hessian(cPickle.load(f))
|
| 167 |
f.close() |
| 168 |
|
| 169 |
def write_hessian(self,filename): |
| 170 |
import cPickle |
| 171 |
f = paropen(filename,'w')
|
| 172 |
cPickle.dump(self.get_hessian(),f)
|
| 173 |
f.close() |
| 174 |
|
| 175 |
def write_to_restartfile(self): |
| 176 |
import cPickle |
| 177 |
f = paropen(self.restartfile,'w') |
| 178 |
cPickle.dump((self.oldpos,
|
| 179 |
self.oldG,
|
| 180 |
self.oldenergy,
|
| 181 |
self.radius,
|
| 182 |
self.hessian,
|
| 183 |
self.energy_estimate),f)
|
| 184 |
f.close() |
| 185 |
|
| 186 |
|
| 187 |
|
| 188 |
def update_hessian(self,pos,G): |
| 189 |
import copy |
| 190 |
if hasattr(self,'oldG'): |
| 191 |
if self.hessianupdate=='BFGS': |
| 192 |
self.update_hessian_bfgs(pos,G)
|
| 193 |
elif self.hessianupdate== 'Powell': |
| 194 |
self.update_hessian_powell(pos,G)
|
| 195 |
else:
|
| 196 |
self.update_hessian_bofill(pos,G)
|
| 197 |
else:
|
| 198 |
if not hasattr(self,'hessian'): |
| 199 |
self.set_default_hessian()
|
| 200 |
|
| 201 |
self.oldpos = copy.copy(pos)
|
| 202 |
self.oldG = copy.copy(G)
|
| 203 |
|
| 204 |
if self.verbosity: |
| 205 |
print 'hessian ',self.hessian |
| 206 |
|
| 207 |
|
| 208 |
|
| 209 |
def update_hessian_bfgs(self,pos,G): |
| 210 |
n = len(self.hessian) |
| 211 |
dgrad = G - self.oldG
|
| 212 |
dpos = pos - self.oldpos
|
| 213 |
absdpos = np.sqrt(np.dot(dpos, dpos)) |
| 214 |
dotg = np.dot(dgrad,dpos) |
| 215 |
tvec = np.dot(dpos,self.hessian)
|
| 216 |
dott = np.dot(dpos,tvec) |
| 217 |
if (abs(dott)>self.eps) and (abs(dotg)>self.eps): |
| 218 |
for i in range(n): |
| 219 |
for j in range(n): |
| 220 |
h = dgrad[i]*dgrad[j]/dotg - tvec[i]*tvec[j]/dott |
| 221 |
self.hessian[i][j] += h
|
| 222 |
|
| 223 |
|
| 224 |
|
| 225 |
def update_hessian_powell(self,pos,G): |
| 226 |
n = len(self.hessian) |
| 227 |
dgrad = G - self.oldG
|
| 228 |
dpos = pos - self.oldpos
|
| 229 |
absdpos = np.dot(dpos, dpos) |
| 230 |
if absdpos<self.eps: |
| 231 |
return
|
| 232 |
|
| 233 |
dotg = np.dot(dgrad,dpos) |
| 234 |
tvec = dgrad-np.dot(dpos,self.hessian)
|
| 235 |
tvecdot = np.dot(tvec,tvec) |
| 236 |
tvecdpos = np.dot(tvec,dpos) |
| 237 |
ddot = tvecdpos/absdpos |
| 238 |
|
| 239 |
dott = np.dot(dpos,tvec) |
| 240 |
if (abs(dott)>self.eps) and (abs(dotg)>self.eps): |
| 241 |
for i in range(n): |
| 242 |
for j in range(n): |
| 243 |
h = tvec[i]*dpos[j] + dpos[i]*tvec[j]-ddot*dpos[i]*dpos[j] |
| 244 |
h *= 1./absdpos
|
| 245 |
self.hessian[i][j] += h
|
| 246 |
|
| 247 |
|
| 248 |
def update_hessian_bofill(self,pos,G): |
| 249 |
print 'update Bofill' |
| 250 |
n = len(self.hessian) |
| 251 |
dgrad = G - self.oldG
|
| 252 |
dpos = pos - self.oldpos
|
| 253 |
absdpos = np.dot(dpos, dpos) |
| 254 |
if absdpos<self.eps: |
| 255 |
return
|
| 256 |
dotg = np.dot(dgrad,dpos) |
| 257 |
tvec = dgrad-np.dot(dpos,self.hessian)
|
| 258 |
tvecdot = np.dot(tvec,tvec) |
| 259 |
tvecdpos = np.dot(tvec,dpos) |
| 260 |
ddot = tvecdpos/absdpos |
| 261 |
|
| 262 |
coef1 = 1. - tvecdpos*tvecdpos/(absdpos*tvecdot)
|
| 263 |
coef2 = (1. - coef1)*absdpos/tvecdpos
|
| 264 |
coef3 = coef1*tvecdpos/absdpos |
| 265 |
|
| 266 |
dott = np.dot(dpos,tvec) |
| 267 |
if (abs(dott)>self.eps) and (abs(dotg)>self.eps): |
| 268 |
for i in range(n): |
| 269 |
for j in range(n): |
| 270 |
h = coef1*(tvec[i]*dpos[j] + dpos[i]*tvec[j])-dpos[i]*dpos[j]*coef3 + coef2*tvec[i]*tvec[j] |
| 271 |
h *= 1./absdpos
|
| 272 |
self.hessian[i][j] += h
|
| 273 |
|
| 274 |
|
| 275 |
|
| 276 |
def step(self, f): |
| 277 |
""" Do one QN step
|
| 278 |
"""
|
| 279 |
|
| 280 |
pos = self.atoms.get_positions().ravel()
|
| 281 |
G = -self.atoms.get_forces().ravel()
|
| 282 |
energy = self.atoms.get_potential_energy()
|
| 283 |
|
| 284 |
|
| 285 |
self.write_iteration(energy,G)
|
| 286 |
|
| 287 |
if hasattr(self,'oldenergy'): |
| 288 |
|
| 289 |
self.write_log('energies ' + str(energy) + ' ' + str(self.oldenergy)) |
| 290 |
|
| 291 |
if self.forcemin: |
| 292 |
de = 1e-4
|
| 293 |
else:
|
| 294 |
de = 1e-2
|
| 295 |
|
| 296 |
if self.transitionstate: |
| 297 |
de = 0.2
|
| 298 |
|
| 299 |
if (energy-self.oldenergy)>de: |
| 300 |
self.write_log('reject step') |
| 301 |
self.atoms.set_positions(self.oldpos.reshape((-1, 3))) |
| 302 |
G = self.oldG
|
| 303 |
energy = self.oldenergy
|
| 304 |
self.radius *= 0.5 |
| 305 |
else:
|
| 306 |
self.update_hessian(pos,G)
|
| 307 |
de = energy - self.oldenergy
|
| 308 |
f = 1.0
|
| 309 |
if self.forcemin: |
| 310 |
self.write_log("energy change; actual: %f estimated: %f "%(de,self.energy_estimate)) |
| 311 |
if abs(self.energy_estimate)>self.eps: |
| 312 |
f = abs((de/self.energy_estimate)-1) |
| 313 |
self.write_log('Energy prediction factor ' + str(f)) |
| 314 |
# fg = self.get_force_prediction(G)
|
| 315 |
self.radius *= scale_radius_energy(f,self.radius) |
| 316 |
|
| 317 |
else:
|
| 318 |
self.write_log("energy change; actual: %f "%(de)) |
| 319 |
self.radius*=1.5 |
| 320 |
|
| 321 |
fg = self.get_force_prediction(G)
|
| 322 |
self.write_log("Scale factors %f %f "%(scale_radius_energy(f,self.radius), |
| 323 |
scale_radius_force(fg,self.radius)))
|
| 324 |
|
| 325 |
|
| 326 |
self.radius = max(min(self.radius,self.maxradius), 0.0001) |
| 327 |
else:
|
| 328 |
self.update_hessian(pos,G)
|
| 329 |
|
| 330 |
self.write_log("new radius %f "%(self.radius)) |
| 331 |
self.oldenergy = energy
|
| 332 |
|
| 333 |
b,V = eigh(self.hessian)
|
| 334 |
V=V.T.copy() |
| 335 |
self.V = V
|
| 336 |
|
| 337 |
# calculate projection of G onto eigenvectors V
|
| 338 |
Gbar = np.dot(G,np.transpose(V)) |
| 339 |
|
| 340 |
lamdas = self.get_lambdas(b,Gbar)
|
| 341 |
|
| 342 |
D = -Gbar/(b-lamdas) |
| 343 |
n = len(D)
|
| 344 |
step = np.zeros((n)) |
| 345 |
for i in range(n): |
| 346 |
step += D[i]*V[i] |
| 347 |
|
| 348 |
pos = self.atoms.get_positions().ravel()
|
| 349 |
pos += step |
| 350 |
|
| 351 |
energy_estimate = self.get_energy_estimate(D,Gbar,b)
|
| 352 |
self.energy_estimate = energy_estimate
|
| 353 |
self.gbar_estimate = self.get_gbar_estimate(D,Gbar,b) |
| 354 |
self.old_gbar = Gbar
|
| 355 |
|
| 356 |
self.atoms.set_positions(pos.reshape((-1, 3))) |
| 357 |
|
| 358 |
|
| 359 |
|
| 360 |
|
| 361 |
def get_energy_estimate(self,D,Gbar,b): |
| 362 |
|
| 363 |
de = 0.0
|
| 364 |
for n in range(len(D)): |
| 365 |
de += D[n]*Gbar[n] + 0.5*D[n]*b[n]*D[n]
|
| 366 |
return de
|
| 367 |
|
| 368 |
def get_gbar_estimate(self,D,Gbar,b): |
| 369 |
gbar_est = (D*b) + Gbar |
| 370 |
self.write_log('Abs Gbar estimate ' + str(np.dot(gbar_est,gbar_est))) |
| 371 |
return gbar_est
|
| 372 |
|
| 373 |
def get_lambdas(self,b,Gbar): |
| 374 |
lamdas = np.zeros((len(b)))
|
| 375 |
|
| 376 |
D = -Gbar/b |
| 377 |
#absD = np.sqrt(np.sum(D**2))
|
| 378 |
absD = np.sqrt(np.dot(D, D)) |
| 379 |
|
| 380 |
eps = 1e-12
|
| 381 |
nminus = self.get_hessian_inertia(b)
|
| 382 |
|
| 383 |
if absD < self.radius: |
| 384 |
if not self.transitionstate: |
| 385 |
self.write_log('Newton step') |
| 386 |
return lamdas
|
| 387 |
else:
|
| 388 |
if nminus==1: |
| 389 |
self.write_log('Newton step') |
| 390 |
return lamdas
|
| 391 |
else:
|
| 392 |
self.write_log("Wrong inertia of Hessian matrix: %2.2f %2.2f "%(b[0],b[1])) |
| 393 |
|
| 394 |
else:
|
| 395 |
self.write_log("Corrected Newton step: abs(D) = %2.2f "%(absD)) |
| 396 |
|
| 397 |
if not self.transitionstate: |
| 398 |
# upper limit
|
| 399 |
upperlimit = min(0,b[0])-eps |
| 400 |
lowerlimit = upperlimit |
| 401 |
lamda = find_lamda(upperlimit,Gbar,b,self.radius)
|
| 402 |
lamdas += lamda |
| 403 |
else:
|
| 404 |
# upperlimit
|
| 405 |
upperlimit = min(-b[0],b[1],0)-eps |
| 406 |
lamda = find_lamda(upperlimit,Gbar,b,self.radius)
|
| 407 |
lamdas += lamda |
| 408 |
lamdas[0] -= 2*lamda |
| 409 |
|
| 410 |
return lamdas
|
| 411 |
|
| 412 |
|
| 413 |
|
| 414 |
def print_hessian(self): |
| 415 |
hessian = self.get_hessian()
|
| 416 |
n = len(hessian)
|
| 417 |
for i in range(n): |
| 418 |
for j in range(n): |
| 419 |
print "%2.4f " %(hessian[i][j]), |
| 420 |
print " " |
| 421 |
|
| 422 |
|
| 423 |
|
| 424 |
|
| 425 |
def get_hessian_inertia(self,eigenvalues): |
| 426 |
# return number of negative modes
|
| 427 |
self.write_log("eigenvalues %2.2f %2.2f %2.2f "%(eigenvalues[0], |
| 428 |
eigenvalues[1],
|
| 429 |
eigenvalues[2]))
|
| 430 |
n = 0
|
| 431 |
while eigenvalues[n]<0: |
| 432 |
n+=1
|
| 433 |
return n
|
| 434 |
|
| 435 |
def get_force_prediction(self,G): |
| 436 |
# return measure of how well the forces are predicted
|
| 437 |
Gbar = np.dot(G,np.transpose(self.V))
|
| 438 |
dGbar_actual = Gbar-self.old_gbar
|
| 439 |
dGbar_predicted = Gbar-self.gbar_estimate
|
| 440 |
|
| 441 |
f = np.dot(dGbar_actual,dGbar_predicted)/np.dot(dGbar_actual,dGbar_actual) |
| 442 |
self.write_log('Force prediction factor ' + str(f)) |
| 443 |
return f
|
| 444 |
|
| 445 |
def write_iteration(self,energy,G):pass |