root / ase / optimize / fire.py @ 14
Historique | Voir | Annoter | Télécharger (2,17 ko)
| 1 |
import numpy as np |
|---|---|
| 2 |
|
| 3 |
from ase.optimize.optimize import Optimizer |
| 4 |
|
| 5 |
|
| 6 |
class FIRE(Optimizer): |
| 7 |
def __init__(self, atoms, restart=None, logfile='-', trajectory=None, |
| 8 |
dt=0.1, maxmove=0.2, dtmax=1.0, Nmin=5, finc=1.1, fdec=0.5, |
| 9 |
astart=0.1, fa=0.99, a=0.1): |
| 10 |
Optimizer.__init__(self, atoms, restart, logfile, trajectory)
|
| 11 |
|
| 12 |
self.dt = dt
|
| 13 |
self.Nsteps = 0 |
| 14 |
self.maxmove = maxmove
|
| 15 |
self.dtmax = dtmax
|
| 16 |
self.Nmin = Nmin
|
| 17 |
self.finc = finc
|
| 18 |
self.fdec = fdec
|
| 19 |
self.astart = astart
|
| 20 |
self.fa = fa
|
| 21 |
self.a = a
|
| 22 |
|
| 23 |
def initialize(self): |
| 24 |
self.v = None |
| 25 |
|
| 26 |
def read(self): |
| 27 |
self.v, self.dt = self.load() |
| 28 |
|
| 29 |
def step(self,f): |
| 30 |
atoms = self.atoms
|
| 31 |
if self.v is None: |
| 32 |
self.v = np.zeros((len(atoms), 3)) |
| 33 |
else:
|
| 34 |
vf = np.vdot(f, self.v)
|
| 35 |
if vf > 0.0: |
| 36 |
self.v = (1.0 - self.a) * self.v + self.a * f / np.sqrt( |
| 37 |
np.vdot(f, f)) * np.sqrt(np.vdot(self.v, self.v)) |
| 38 |
if self.Nsteps > self.Nmin: |
| 39 |
self.dt = min(self.dt * self.finc, self.dtmax) |
| 40 |
self.a *= self.fa |
| 41 |
self.Nsteps += 1 |
| 42 |
else:
|
| 43 |
self.v[:] *= 0.0 |
| 44 |
self.a = self.astart |
| 45 |
self.dt *= self.fdec |
| 46 |
self.Nsteps = 0 |
| 47 |
# if vf < 0.0:
|
| 48 |
# self.v[:] = 0.0
|
| 49 |
# self.a = self.astart
|
| 50 |
# self.dt *= self.fdec
|
| 51 |
# self.Nsteps = 0
|
| 52 |
# else:
|
| 53 |
# self.v = (1.0 - self.a) * self.v + self.a * f * np.sqrt(
|
| 54 |
# np.vdot(f, f) / np.vdot(self.v, self.v))
|
| 55 |
# if self.Nsteps > self.Nmin:
|
| 56 |
# dt = min(dt * self.finc, dtmax)
|
| 57 |
# self.a *= self.fa
|
| 58 |
# self.Nsteps += 1
|
| 59 |
|
| 60 |
self.v += self.dt * f |
| 61 |
dr = self.dt * self.v |
| 62 |
normdr = np.sqrt(np.vdot(dr, dr)) |
| 63 |
if normdr > self.maxmove: |
| 64 |
dr = self.maxmove * dr / normdr
|
| 65 |
r = atoms.get_positions() |
| 66 |
atoms.set_positions(r + dr) |
| 67 |
self.dump((self.v, self.dt)) |