root / ase / md / nptberendsen.py @ 14
Historique | Voir | Annoter | Télécharger (3,79 ko)
| 1 |
"""Berendsen NPT dynamics class."""
|
|---|---|
| 2 |
|
| 3 |
import numpy as np |
| 4 |
|
| 5 |
#from ase.md import MolecularDynamics
|
| 6 |
from ase.md.nvtberendsen import NVTBerendsen |
| 7 |
import ase.units as units |
| 8 |
#import math
|
| 9 |
|
| 10 |
|
| 11 |
class NPTBerendsen(NVTBerendsen): |
| 12 |
"""Berendsen (constant N, P, T) molecular dynamics.
|
| 13 |
|
| 14 |
Usage: NPTBerendsen(atoms, timestep, temperature, taut, pressure, taup)
|
| 15 |
|
| 16 |
atoms
|
| 17 |
The list of atoms.
|
| 18 |
|
| 19 |
timestep
|
| 20 |
The time step.
|
| 21 |
|
| 22 |
temperature
|
| 23 |
The desired temperature, in Kelvin.
|
| 24 |
|
| 25 |
taut
|
| 26 |
Time constant for Berendsen temperature coupling.
|
| 27 |
|
| 28 |
fixcm
|
| 29 |
If True, the position and momentum of the center of mass is
|
| 30 |
kept unperturbed. Default: True.
|
| 31 |
|
| 32 |
pressure
|
| 33 |
The desired pressure, in bar (1 bar = 1e5 Pa).
|
| 34 |
|
| 35 |
taup
|
| 36 |
Time constant for Berendsen pressure coupling.
|
| 37 |
|
| 38 |
compressibility
|
| 39 |
The compressibility of the material, water 4.57E-5 bar-1, in bar-1
|
| 40 |
|
| 41 |
"""
|
| 42 |
|
| 43 |
def __init__(self, atoms, timestep, temperature, taut=0.5e3*units.fs, |
| 44 |
pressure = 1.01325, taup=1e3*units.fs, |
| 45 |
compressibility=4.57e-5, fixcm=True, |
| 46 |
trajectory=None, logfile=None, loginterval=1): |
| 47 |
|
| 48 |
NVTBerendsen.__init__(self, atoms, timestep, temperature, taut, fixcm,
|
| 49 |
trajectory, |
| 50 |
logfile, loginterval) |
| 51 |
self.taup = taup
|
| 52 |
self.pressure = pressure
|
| 53 |
self.compressibility = compressibility
|
| 54 |
|
| 55 |
def set_taup(self, taut): |
| 56 |
self.taut = taut
|
| 57 |
|
| 58 |
def get_taup(self): |
| 59 |
return self.taut |
| 60 |
|
| 61 |
def set_pressure(self, pressure): |
| 62 |
self.pressure = pressure
|
| 63 |
|
| 64 |
def get_pressure(self): |
| 65 |
return self.pressure |
| 66 |
|
| 67 |
def set_compressibility(self, compressibility): |
| 68 |
self.compressibility = compressibility
|
| 69 |
|
| 70 |
def get_compressibility(self): |
| 71 |
return self.compressibility |
| 72 |
|
| 73 |
def set_timestep(self, timestep): |
| 74 |
self.dt = timestep
|
| 75 |
|
| 76 |
def get_timestep(self): |
| 77 |
return self.dt |
| 78 |
|
| 79 |
|
| 80 |
|
| 81 |
def scale_positions_and_cell(self): |
| 82 |
""" Do the Berendsen pressure coupling,
|
| 83 |
scale the atom positon and the simulation cell."""
|
| 84 |
|
| 85 |
taupscl = self.dt / self.taup |
| 86 |
stress = self.atoms.get_stress()
|
| 87 |
old_pressure = self.atoms.get_isotropic_pressure(stress)
|
| 88 |
scl_pressure = 1.0 - taupscl * self.compressibility / 3.0 * \ |
| 89 |
(self.pressure - old_pressure)
|
| 90 |
|
| 91 |
#print "old_pressure", old_pressure
|
| 92 |
#print "volume scaling by:", scl_pressure
|
| 93 |
|
| 94 |
cell = self.atoms.get_cell()
|
| 95 |
positions = self.atoms.get_positions()
|
| 96 |
|
| 97 |
cell = scl_pressure * cell |
| 98 |
positions = scl_pressure * positions |
| 99 |
|
| 100 |
self.atoms.set_cell(cell, scale_atoms=False) |
| 101 |
self.atoms.set_positions(positions)
|
| 102 |
|
| 103 |
return
|
| 104 |
|
| 105 |
|
| 106 |
def step(self, f): |
| 107 |
""" move one timestep forward using Berenden NPT molecular dynamics."""
|
| 108 |
|
| 109 |
NVTBerendsen.scale_velocities(self)
|
| 110 |
self.scale_positions_and_cell()
|
| 111 |
|
| 112 |
#one step velocity verlet
|
| 113 |
atoms = self.atoms
|
| 114 |
p = self.atoms.get_momenta()
|
| 115 |
p += 0.5 * self.dt * f |
| 116 |
|
| 117 |
if self.fixcm: |
| 118 |
# calculate the center of mass
|
| 119 |
# momentum and subtract it
|
| 120 |
psum = p.sum(axis=0) / float(len(p)) |
| 121 |
p = p - psum |
| 122 |
|
| 123 |
self.atoms.set_positions(self.atoms.get_positions() + |
| 124 |
self.dt * p / self.atoms.get_masses()[:,np.newaxis]) |
| 125 |
|
| 126 |
# We need to store the momenta on the atoms before calculating
|
| 127 |
# the forces, as in a parallel Asap calculation atoms may
|
| 128 |
# migrate during force calculations, and the momenta need to
|
| 129 |
# migrate along with the atoms. For the same reason, we
|
| 130 |
# cannot use self.masses in the line above.
|
| 131 |
|
| 132 |
self.atoms.set_momenta(p)
|
| 133 |
f = self.atoms.get_forces()
|
| 134 |
atoms.set_momenta(self.atoms.get_momenta() + 0.5 * self.dt * f) |
| 135 |
|
| 136 |
|
| 137 |
return f
|