root / ase / lattice / surface.py @ 14
Historique | Voir | Annoter | Télécharger (10,52 ko)
| 1 |
"""Helper functions for creating the most common surfaces and related tasks.
|
|---|---|
| 2 |
|
| 3 |
The helper functions can create the most common low-index surfaces,
|
| 4 |
add vacuum layers and add adsorbates.
|
| 5 |
|
| 6 |
"""
|
| 7 |
|
| 8 |
from math import sqrt |
| 9 |
|
| 10 |
import numpy as np |
| 11 |
|
| 12 |
from ase.atom import Atom |
| 13 |
from ase.atoms import Atoms |
| 14 |
from ase.data import reference_states, atomic_numbers |
| 15 |
|
| 16 |
|
| 17 |
def fcc100(symbol, size, a=None, vacuum=None): |
| 18 |
"""FCC(100) surface.
|
| 19 |
|
| 20 |
Supported special adsorption sites: 'ontop', 'bridge', 'hollow'."""
|
| 21 |
return surface(symbol, 'fcc', '100', size, a, None, vacuum) |
| 22 |
|
| 23 |
def fcc110(symbol, size, a=None, vacuum=None): |
| 24 |
"""FCC(110) surface.
|
| 25 |
|
| 26 |
Supported special adsorption sites: 'ontop', 'longbridge',
|
| 27 |
'shortbridge','hollow'."""
|
| 28 |
return surface(symbol, 'fcc', '110', size, a, None, vacuum) |
| 29 |
|
| 30 |
def bcc100(symbol, size, a=None, vacuum=None): |
| 31 |
"""BCC(100) surface.
|
| 32 |
|
| 33 |
Supported special adsorption sites: 'ontop', 'bridge', 'hollow'."""
|
| 34 |
return surface(symbol, 'bcc', '100', size, a, None, vacuum) |
| 35 |
|
| 36 |
def bcc110(symbol, size, a=None, vacuum=None, orthogonal=False): |
| 37 |
"""BCC(110) surface.
|
| 38 |
|
| 39 |
Supported special adsorption sites: 'ontop', 'longbridge',
|
| 40 |
'shortbridge', 'hollow'.
|
| 41 |
|
| 42 |
Use *orthogonal=True* to get an orthogonal unit cell - works only
|
| 43 |
for size=(i,j,k) with j even."""
|
| 44 |
return surface(symbol, 'bcc', '110', size, a, None, vacuum, orthogonal) |
| 45 |
|
| 46 |
def bcc111(symbol, size, a=None, vacuum=None, orthogonal=False): |
| 47 |
"""BCC(111) surface.
|
| 48 |
|
| 49 |
Supported special adsorption sites: 'ontop'.
|
| 50 |
|
| 51 |
Use *orthogonal=True* to get an orthogonal unit cell - works only
|
| 52 |
for size=(i,j,k) with j even."""
|
| 53 |
return surface(symbol, 'bcc', '111', size, a, None, vacuum, orthogonal) |
| 54 |
|
| 55 |
def fcc111(symbol, size, a=None, vacuum=None, orthogonal=False): |
| 56 |
"""FCC(111) surface.
|
| 57 |
|
| 58 |
Supported special adsorption sites: 'ontop', 'bridge', 'fcc' and 'hcp'.
|
| 59 |
|
| 60 |
Use *orthogonal=True* to get an orthogonal unit cell - works only
|
| 61 |
for size=(i,j,k) with j even."""
|
| 62 |
return surface(symbol, 'fcc', '111', size, a, None, vacuum, orthogonal) |
| 63 |
|
| 64 |
def hcp0001(symbol, size, a=None, c=None, vacuum=None, orthogonal=False): |
| 65 |
"""HCP(0001) surface.
|
| 66 |
|
| 67 |
Supported special adsorption sites: 'ontop', 'bridge', 'fcc' and 'hcp'.
|
| 68 |
|
| 69 |
Use *orthogonal=True* to get an orthogonal unit cell - works only
|
| 70 |
for size=(i,j,k) with j even."""
|
| 71 |
return surface(symbol, 'hcp', '0001', size, a, c, vacuum, orthogonal) |
| 72 |
|
| 73 |
|
| 74 |
def add_adsorbate(slab, adsorbate, height, position=(0, 0), offset=None, |
| 75 |
mol_index=0):
|
| 76 |
"""Add an adsorbate to a surface.
|
| 77 |
|
| 78 |
This function adds an adsorbate to a slab. If the slab is
|
| 79 |
produced by one of the utility functions in ase.lattice.surface, it
|
| 80 |
is possible to specify the position of the adsorbate by a keyword
|
| 81 |
(the supported keywords depend on which function was used to
|
| 82 |
create the slab).
|
| 83 |
|
| 84 |
If the adsorbate is a molecule, the atom indexed by the mol_index
|
| 85 |
optional argument is positioned on top of the adsorption position
|
| 86 |
on the surface, and it is the responsibility of the user to orient
|
| 87 |
the adsorbate in a sensible way.
|
| 88 |
|
| 89 |
This function can be called multiple times to add more than one
|
| 90 |
adsorbate.
|
| 91 |
|
| 92 |
Parameters:
|
| 93 |
|
| 94 |
slab: The surface onto which the adsorbate should be added.
|
| 95 |
|
| 96 |
adsorbate: The adsorbate. Must be one of the following three types:
|
| 97 |
A string containing the chemical symbol for a single atom.
|
| 98 |
An atom object.
|
| 99 |
An atoms object (for a molecular adsorbate).
|
| 100 |
|
| 101 |
height: Height above the surface.
|
| 102 |
|
| 103 |
position: The x-y position of the adsorbate, either as a tuple of
|
| 104 |
two numbers or as a keyword (if the surface is produced by one
|
| 105 |
of the functions in ase.lattice.surfaces).
|
| 106 |
|
| 107 |
offset (default: None): Offsets the adsorbate by a number of unit
|
| 108 |
cells. Mostly useful when adding more than one adsorbate.
|
| 109 |
|
| 110 |
mol_index (default: 0): If the adsorbate is a molecule, index of
|
| 111 |
the atom to be positioned above the location specified by the
|
| 112 |
position argument.
|
| 113 |
|
| 114 |
Note *position* is given in absolute xy coordinates (or as
|
| 115 |
a keyword), whereas offset is specified in unit cells. This
|
| 116 |
can be used to give the positions in units of the unit cell by
|
| 117 |
using *offset* instead.
|
| 118 |
|
| 119 |
"""
|
| 120 |
info = slab.adsorbate_info |
| 121 |
if 'cell' not in info: |
| 122 |
info['cell'] = slab.get_cell()[:2,:2] |
| 123 |
|
| 124 |
|
| 125 |
pos = np.array([0.0, 0.0]) # (x, y) part |
| 126 |
spos = np.array([0.0, 0.0]) # part relative to unit cell |
| 127 |
if offset is not None: |
| 128 |
spos += np.asarray(offset, float)
|
| 129 |
|
| 130 |
if isinstance(position, str): |
| 131 |
# A site-name:
|
| 132 |
if 'sites' not in info: |
| 133 |
raise TypeError('If the atoms are not made by an ' + |
| 134 |
'ase.lattice.surface function, ' +
|
| 135 |
'position cannot be a name.')
|
| 136 |
if position not in info['sites']: |
| 137 |
raise TypeError('Adsorption site %s not supported.' % position) |
| 138 |
spos += info['sites'][position]
|
| 139 |
else:
|
| 140 |
pos += position |
| 141 |
|
| 142 |
pos += np.dot(spos, info['cell'])
|
| 143 |
|
| 144 |
# Convert the adsorbate to an Atoms object
|
| 145 |
if isinstance(adsorbate, Atoms): |
| 146 |
ads = adsorbate |
| 147 |
elif isinstance(adsorbate, Atom): |
| 148 |
ads = Atoms([adsorbate]) |
| 149 |
else:
|
| 150 |
# Hope it is a useful string or something like that
|
| 151 |
ads = Atoms(adsorbate) |
| 152 |
|
| 153 |
# Get the z-coordinate:
|
| 154 |
try:
|
| 155 |
a = info['top layer atom index']
|
| 156 |
except KeyError: |
| 157 |
a = slab.positions[:, 2].argmax()
|
| 158 |
info['top layer atom index']= a
|
| 159 |
z = slab.positions[a, 2] + height
|
| 160 |
|
| 161 |
# Move adsorbate into position
|
| 162 |
ads.translate([pos[0], pos[1], z] - ads.positions[mol_index]) |
| 163 |
|
| 164 |
# Attach the adsorbate
|
| 165 |
slab.extend(ads) |
| 166 |
|
| 167 |
|
| 168 |
def surface(symbol, structure, face, size, a, c, vacuum, orthogonal=True): |
| 169 |
"""Function to build often used surfaces.
|
| 170 |
|
| 171 |
Don't call this function directly - use fcc100, fcc110, bcc111, ..."""
|
| 172 |
|
| 173 |
Z = atomic_numbers[symbol] |
| 174 |
|
| 175 |
if a is None: |
| 176 |
sym = reference_states[Z]['symmetry'].lower()
|
| 177 |
if sym != structure:
|
| 178 |
raise ValueError("Can't guess lattice constant for %s-%s!" % |
| 179 |
(structure, symbol)) |
| 180 |
a = reference_states[Z]['a']
|
| 181 |
|
| 182 |
if structure == 'hcp' and c is None: |
| 183 |
if reference_states[Z]['symmetry'].lower() == 'hcp': |
| 184 |
c = reference_states[Z]['c/a'] * a
|
| 185 |
else:
|
| 186 |
c = sqrt(8 / 3.0) * a |
| 187 |
|
| 188 |
positions = np.empty((size[2], size[1], size[0], 3)) |
| 189 |
positions[..., 0] = np.arange(size[0]).reshape((1, 1, -1)) |
| 190 |
positions[..., 1] = np.arange(size[1]).reshape((1, -1, 1)) |
| 191 |
positions[..., 2] = np.arange(size[2]).reshape((-1, 1, 1)) |
| 192 |
|
| 193 |
numbers = np.ones(size[0] * size[1] * size[2], int) * Z |
| 194 |
|
| 195 |
tags = np.empty((size[2], size[1], size[0]), int) |
| 196 |
tags[:] = np.arange(size[2], 0, -1).reshape((-1, 1, 1)) |
| 197 |
|
| 198 |
slab = Atoms(numbers, |
| 199 |
tags=tags.ravel(), |
| 200 |
pbc=(True, True, False), |
| 201 |
cell=size) |
| 202 |
|
| 203 |
surface_cell = None
|
| 204 |
sites = {'ontop': (0, 0)}
|
| 205 |
surf = structure + face |
| 206 |
if surf == 'fcc100': |
| 207 |
cell = (sqrt(0.5), sqrt(0.5), 0.5) |
| 208 |
positions[-2::-2, ..., :2] += 0.5 |
| 209 |
sites.update({'hollow': (0.5, 0.5), 'bridge': (0.5, 0)})
|
| 210 |
elif surf == 'fcc110': |
| 211 |
cell = (1.0, sqrt(0.5), sqrt(0.125)) |
| 212 |
positions[-2::-2, ..., :2] += 0.5 |
| 213 |
sites.update({'hollow': (0.5, 0.5), 'longbridge': (0.5, 0),
|
| 214 |
'shortbridge': (0, 0.5)}) |
| 215 |
elif surf == 'bcc100': |
| 216 |
cell = (1.0, 1.0, 0.5) |
| 217 |
positions[-2::-2, ..., :2] += 0.5 |
| 218 |
sites.update({'hollow': (0.5, 0.5), 'bridge': (0.5, 0)})
|
| 219 |
else:
|
| 220 |
if orthogonal and size[1] % 2 == 1: |
| 221 |
raise ValueError(("Can't make orthorhombic cell with size=%r. " % |
| 222 |
(tuple(size),)) +
|
| 223 |
'Second number in size must be even.')
|
| 224 |
if surf == 'fcc111': |
| 225 |
cell = (sqrt(0.5), sqrt(0.375), 1 / sqrt(3)) |
| 226 |
if orthogonal:
|
| 227 |
positions[-1::-3, 1::2, :, 0] += 0.5 |
| 228 |
positions[-2::-3, 1::2, :, 0] += 0.5 |
| 229 |
positions[-3::-3, 1::2, :, 0] -= 0.5 |
| 230 |
positions[-2::-3, ..., :2] += (0.0, 2.0 / 3) |
| 231 |
positions[-3::-3, ..., :2] += (0.5, 1.0 / 3) |
| 232 |
else:
|
| 233 |
positions[-2::-3, ..., :2] += (-1.0 / 3, 2.0 / 3) |
| 234 |
positions[-3::-3, ..., :2] += (1.0 / 3, 1.0 / 3) |
| 235 |
sites.update({'bridge': (0.5, 0), 'fcc': (1.0 / 3, 1.0 / 3),
|
| 236 |
'hcp': (2.0 / 3, 2.0 / 3)}) |
| 237 |
elif surf == 'hcp0001': |
| 238 |
cell = (1.0, sqrt(0.75), 0.5 * c / a) |
| 239 |
if orthogonal:
|
| 240 |
positions[:, 1::2, :, 0] += 0.5 |
| 241 |
positions[-2::-2, ..., :2] += (0.0, 2.0 / 3) |
| 242 |
else:
|
| 243 |
positions[-2::-2, ..., :2] += (-1.0 / 3, 2.0 / 3) |
| 244 |
sites.update({'bridge': (0.5, 0), 'fcc': (1.0 / 3, 1.0 / 3),
|
| 245 |
'hcp': (2.0 / 3, 2.0 / 3)}) |
| 246 |
elif surf == 'bcc110': |
| 247 |
cell = (1.0, sqrt(0.5), sqrt(0.5)) |
| 248 |
if orthogonal:
|
| 249 |
positions[:, 1::2, :, 0] += 0.5 |
| 250 |
positions[-2::-2, ..., :2] += (0.0, 1.0) |
| 251 |
else:
|
| 252 |
positions[-2::-2, ..., :2] += (-0.5, 1.0) |
| 253 |
sites.update({'shortbridge': (0, 0.5),
|
| 254 |
'longbridge': (0.5, 0), |
| 255 |
'hollow': (0.375, 0.25)}) |
| 256 |
elif surf == 'bcc111': |
| 257 |
cell = (sqrt(2), sqrt(1.5), sqrt(3) / 6) |
| 258 |
if orthogonal:
|
| 259 |
positions[-1::-3, 1::2, :, 0] += 0.5 |
| 260 |
positions[-2::-3, 1::2, :, 0] += 0.5 |
| 261 |
positions[-3::-3, 1::2, :, 0] -= 0.5 |
| 262 |
positions[-2::-3, ..., :2] += (0.0, 2.0 / 3) |
| 263 |
positions[-3::-3, ..., :2] += (0.5, 1.0 / 3) |
| 264 |
else:
|
| 265 |
positions[-2::-3, ..., :2] += (-1.0 / 3, 2.0 / 3) |
| 266 |
positions[-3::-3, ..., :2] += (1.0 / 3, 1.0 / 3) |
| 267 |
sites.update({'hollow': (1.0 / 3, 1.0 / 3)})
|
| 268 |
|
| 269 |
surface_cell = a * np.array([(cell[0], 0), |
| 270 |
(cell[0] / 2, cell[1])]) |
| 271 |
if not orthogonal: |
| 272 |
cell = np.array([(cell[0], 0, 0), |
| 273 |
(cell[0] / 2, cell[1], 0), |
| 274 |
(0, 0, cell[2])]) |
| 275 |
|
| 276 |
if surface_cell is None: |
| 277 |
surface_cell = a * np.diag(cell[:2])
|
| 278 |
|
| 279 |
if isinstance(cell, tuple): |
| 280 |
cell = np.diag(cell) |
| 281 |
|
| 282 |
slab.set_positions(positions.reshape((-1, 3))) |
| 283 |
|
| 284 |
slab.set_cell([a * v * n for v, n in zip(cell, size)], scale_atoms=True) |
| 285 |
|
| 286 |
if vacuum is not None: |
| 287 |
slab.center(vacuum=vacuum, axis=2)
|
| 288 |
|
| 289 |
slab.adsorbate_info['cell'] = surface_cell
|
| 290 |
slab.adsorbate_info['sites'] = sites
|
| 291 |
|
| 292 |
return slab
|
| 293 |
|
| 294 |
|
| 295 |
|