root / ase / io / pupynere.py @ 14
Historique | Voir | Annoter | Télécharger (20,72 ko)
| 1 |
"""
|
|---|---|
| 2 |
NetCDF reader/writer module.
|
| 3 |
|
| 4 |
This module implements the Scientific.IO.NetCDF API to read and create
|
| 5 |
NetCDF files. The same API is also used in the PyNIO and pynetcdf
|
| 6 |
modules, allowing these modules to be used interchangebly when working
|
| 7 |
with NetCDF files. The major advantage of ``scipy.io.netcdf`` over other
|
| 8 |
modules is that it doesn't require the code to be linked to the NetCDF
|
| 9 |
libraries as the other modules do.
|
| 10 |
|
| 11 |
The code is based on the NetCDF file format specification
|
| 12 |
(http://www.unidata.ucar.edu/software/netcdf/guide_15.html). A NetCDF
|
| 13 |
file is a self-describing binary format, with a header followed by
|
| 14 |
data. The header contains metadata describing dimensions, variables
|
| 15 |
and the position of the data in the file, so access can be done in an
|
| 16 |
efficient manner without loading unnecessary data into memory. We use
|
| 17 |
the ``mmap`` module to create Numpy arrays mapped to the data on disk,
|
| 18 |
for the same purpose.
|
| 19 |
|
| 20 |
The structure of a NetCDF file is as follows:
|
| 21 |
|
| 22 |
C D F <VERSION BYTE> <NUMBER OF RECORDS>
|
| 23 |
<DIMENSIONS> <GLOBAL ATTRIBUTES> <VARIABLES METADATA>
|
| 24 |
<NON-RECORD DATA> <RECORD DATA>
|
| 25 |
|
| 26 |
Record data refers to data where the first axis can be expanded at
|
| 27 |
will. All record variables share a same dimension at the first axis,
|
| 28 |
and they are stored at the end of the file per record, ie
|
| 29 |
|
| 30 |
A[0], B[0], ..., A[1], B[1], ..., etc,
|
| 31 |
|
| 32 |
so that new data can be appended to the file without changing its original
|
| 33 |
structure. Non-record data are padded to a 4n bytes boundary. Record data
|
| 34 |
are also padded, unless there is exactly one record variable in the file,
|
| 35 |
in which case the padding is dropped. All data is stored in big endian
|
| 36 |
byte order.
|
| 37 |
|
| 38 |
The Scientific.IO.NetCDF API allows attributes to be added directly to
|
| 39 |
instances of ``netcdf_file`` and ``netcdf_variable``. To differentiate
|
| 40 |
between user-set attributes and instance attributes, user-set attributes
|
| 41 |
are automatically stored in the ``_attributes`` attribute by overloading
|
| 42 |
``__setattr__``. This is the reason why the code sometimes uses
|
| 43 |
``obj.__dict__['key'] = value``, instead of simply ``obj.key = value``;
|
| 44 |
otherwise the key would be inserted into userspace attributes.
|
| 45 |
|
| 46 |
To create a NetCDF file::
|
| 47 |
|
| 48 |
>>> import time
|
| 49 |
>>> f = netcdf_file('simple.nc', 'w')
|
| 50 |
>>> f.history = 'Created for a test'
|
| 51 |
>>> f.createDimension('time', 10)
|
| 52 |
>>> time = f.createVariable('time', 'i', ('time',))
|
| 53 |
>>> time[:] = range(10)
|
| 54 |
>>> time.units = 'days since 2008-01-01'
|
| 55 |
>>> f.close()
|
| 56 |
|
| 57 |
To read the NetCDF file we just created::
|
| 58 |
|
| 59 |
>>> f = netcdf_file('simple.nc', 'r')
|
| 60 |
>>> print f.history
|
| 61 |
Created for a test
|
| 62 |
>>> time = f.variables['time']
|
| 63 |
>>> print time.units
|
| 64 |
days since 2008-01-01
|
| 65 |
>>> print time.shape
|
| 66 |
(10,)
|
| 67 |
>>> print time[-1]
|
| 68 |
9
|
| 69 |
>>> f.close()
|
| 70 |
|
| 71 |
TODO: properly implement ``_FillValue``.
|
| 72 |
"""
|
| 73 |
|
| 74 |
__all__ = ['netcdf_file', 'netcdf_variable'] |
| 75 |
|
| 76 |
|
| 77 |
from operator import mul |
| 78 |
from mmap import mmap, ACCESS_READ |
| 79 |
|
| 80 |
from numpy import fromstring, ndarray, dtype, empty, array, asarray |
| 81 |
from numpy import little_endian as LITTLE_ENDIAN |
| 82 |
|
| 83 |
|
| 84 |
ABSENT = '\x00\x00\x00\x00\x00\x00\x00\x00'
|
| 85 |
ZERO = '\x00\x00\x00\x00'
|
| 86 |
NC_BYTE = '\x00\x00\x00\x01'
|
| 87 |
NC_CHAR = '\x00\x00\x00\x02'
|
| 88 |
NC_SHORT = '\x00\x00\x00\x03'
|
| 89 |
NC_INT = '\x00\x00\x00\x04'
|
| 90 |
NC_FLOAT = '\x00\x00\x00\x05'
|
| 91 |
NC_DOUBLE = '\x00\x00\x00\x06'
|
| 92 |
NC_DIMENSION = '\x00\x00\x00\n'
|
| 93 |
NC_VARIABLE = '\x00\x00\x00\x0b'
|
| 94 |
NC_ATTRIBUTE = '\x00\x00\x00\x0c'
|
| 95 |
|
| 96 |
|
| 97 |
TYPEMAP = { NC_BYTE: ('b', 1),
|
| 98 |
NC_CHAR: ('c', 1), |
| 99 |
NC_SHORT: ('h', 2), |
| 100 |
NC_INT: ('i', 4), |
| 101 |
NC_FLOAT: ('f', 4), |
| 102 |
NC_DOUBLE: ('d', 8) } |
| 103 |
|
| 104 |
REVERSE = { 'b': NC_BYTE,
|
| 105 |
'c': NC_CHAR,
|
| 106 |
'h': NC_SHORT,
|
| 107 |
'i': NC_INT,
|
| 108 |
'f': NC_FLOAT,
|
| 109 |
'd': NC_DOUBLE,
|
| 110 |
|
| 111 |
# these come from asarray(1).dtype.char and asarray('foo').dtype.char,
|
| 112 |
# used when getting the types from generic attributes.
|
| 113 |
'l': NC_INT,
|
| 114 |
'S': NC_CHAR }
|
| 115 |
|
| 116 |
|
| 117 |
class netcdf_file(object): |
| 118 |
"""
|
| 119 |
A ``netcdf_file`` object has two standard attributes: ``dimensions`` and
|
| 120 |
``variables``. The values of both are dictionaries, mapping dimension
|
| 121 |
names to their associated lengths and variable names to variables,
|
| 122 |
respectively. Application programs should never modify these
|
| 123 |
dictionaries.
|
| 124 |
|
| 125 |
All other attributes correspond to global attributes defined in the
|
| 126 |
NetCDF file. Global file attributes are created by assigning to an
|
| 127 |
attribute of the ``netcdf_file`` object.
|
| 128 |
|
| 129 |
"""
|
| 130 |
def __init__(self, filename, mode='r', mmap=True): |
| 131 |
if not __debug__: |
| 132 |
raise RuntimeError('Current version of pupynere does not ' + |
| 133 |
'work with -O option. We need to update ' +
|
| 134 |
'to version 1.0.7!')
|
| 135 |
|
| 136 |
self.filename = filename
|
| 137 |
self.use_mmap = mmap
|
| 138 |
|
| 139 |
assert mode in 'rw', "Mode must be either 'r' or 'w'." |
| 140 |
self.mode = mode
|
| 141 |
|
| 142 |
self.dimensions = {}
|
| 143 |
self.variables = {}
|
| 144 |
|
| 145 |
self._dims = []
|
| 146 |
self._recs = 0 |
| 147 |
self._recsize = 0 |
| 148 |
|
| 149 |
self.fp = open(self.filename, '%sb' % mode) |
| 150 |
|
| 151 |
self._attributes = {}
|
| 152 |
|
| 153 |
if mode is 'r': |
| 154 |
self._read()
|
| 155 |
|
| 156 |
def __setattr__(self, attr, value): |
| 157 |
# Store user defined attributes in a separate dict,
|
| 158 |
# so we can save them to file later.
|
| 159 |
try:
|
| 160 |
self._attributes[attr] = value
|
| 161 |
except AttributeError: |
| 162 |
pass
|
| 163 |
self.__dict__[attr] = value
|
| 164 |
|
| 165 |
def close(self): |
| 166 |
if not self.fp.closed: |
| 167 |
try:
|
| 168 |
self.flush()
|
| 169 |
finally:
|
| 170 |
self.fp.close()
|
| 171 |
__del__ = close |
| 172 |
|
| 173 |
def createDimension(self, name, length): |
| 174 |
self.dimensions[name] = length
|
| 175 |
self._dims.append(name)
|
| 176 |
|
| 177 |
def createVariable(self, name, type, dimensions): |
| 178 |
shape = tuple([self.dimensions[dim] for dim in dimensions]) |
| 179 |
shape_ = tuple([dim or 0 for dim in shape]) # replace None with 0 for numpy |
| 180 |
|
| 181 |
if isinstance(type, basestring): type = dtype(type) |
| 182 |
typecode, size = type.char, type.itemsize |
| 183 |
dtype_ = '>%s' % typecode
|
| 184 |
if size > 1: dtype_ += str(size) |
| 185 |
|
| 186 |
data = empty(shape_, dtype=dtype_) |
| 187 |
self.variables[name] = netcdf_variable(data, typecode, shape, dimensions)
|
| 188 |
return self.variables[name] |
| 189 |
|
| 190 |
def flush(self): |
| 191 |
if self.mode is 'w': |
| 192 |
self._write()
|
| 193 |
sync = flush |
| 194 |
|
| 195 |
def _write(self): |
| 196 |
self.fp.write('CDF') |
| 197 |
|
| 198 |
self.__dict__['version_byte'] = 1 |
| 199 |
self.fp.write(array(1, '>b').tostring()) |
| 200 |
|
| 201 |
# Write headers and data.
|
| 202 |
self._write_numrecs()
|
| 203 |
self._write_dim_array()
|
| 204 |
self._write_gatt_array()
|
| 205 |
self._write_var_array()
|
| 206 |
|
| 207 |
def _write_numrecs(self): |
| 208 |
# Get highest record count from all record variables.
|
| 209 |
for var in self.variables.values(): |
| 210 |
if var.isrec and len(var.data) > self._recs: |
| 211 |
self.__dict__['_recs'] = len(var.data) |
| 212 |
self._pack_int(self._recs) |
| 213 |
|
| 214 |
def _write_dim_array(self): |
| 215 |
if self.dimensions: |
| 216 |
self.fp.write(NC_DIMENSION)
|
| 217 |
self._pack_int(len(self.dimensions)) |
| 218 |
for name in self._dims: |
| 219 |
self._pack_string(name)
|
| 220 |
length = self.dimensions[name]
|
| 221 |
self._pack_int(length or 0) # replace None with 0 for record dimension |
| 222 |
else:
|
| 223 |
self.fp.write(ABSENT)
|
| 224 |
|
| 225 |
def _write_gatt_array(self): |
| 226 |
self._write_att_array(self._attributes) |
| 227 |
|
| 228 |
def _write_att_array(self, attributes): |
| 229 |
if attributes:
|
| 230 |
self.fp.write(NC_ATTRIBUTE)
|
| 231 |
self._pack_int(len(attributes)) |
| 232 |
for name, values in attributes.items(): |
| 233 |
self._pack_string(name)
|
| 234 |
self._write_values(values)
|
| 235 |
else:
|
| 236 |
self.fp.write(ABSENT)
|
| 237 |
|
| 238 |
def _write_var_array(self): |
| 239 |
if self.variables: |
| 240 |
self.fp.write(NC_VARIABLE)
|
| 241 |
self._pack_int(len(self.variables)) |
| 242 |
|
| 243 |
# Sort variables non-recs first, then recs.
|
| 244 |
variables = self.variables.items()
|
| 245 |
if True: # Backwards compatible with Python versions < 2.4 |
| 246 |
keys = [(v._shape and not v.isrec, k) for k, v in variables] |
| 247 |
keys.sort() |
| 248 |
keys.reverse() |
| 249 |
variables = [k for isrec, k in keys] |
| 250 |
else: # Python version must be >= 2.4 |
| 251 |
variables.sort(key=lambda (k, v): v._shape and not v.isrec) |
| 252 |
variables.reverse() |
| 253 |
variables = [k for (k, v) in variables] |
| 254 |
|
| 255 |
# Set the metadata for all variables.
|
| 256 |
for name in variables: |
| 257 |
self._write_var_metadata(name)
|
| 258 |
# Now that we have the metadata, we know the vsize of
|
| 259 |
# each record variable, so we can calculate recsize.
|
| 260 |
self.__dict__['_recsize'] = sum([ |
| 261 |
var._vsize for var in self.variables.values() |
| 262 |
if var.isrec])
|
| 263 |
# Set the data for all variables.
|
| 264 |
for name in variables: |
| 265 |
self._write_var_data(name)
|
| 266 |
else:
|
| 267 |
self.fp.write(ABSENT)
|
| 268 |
|
| 269 |
def _write_var_metadata(self, name): |
| 270 |
var = self.variables[name]
|
| 271 |
|
| 272 |
self._pack_string(name)
|
| 273 |
self._pack_int(len(var.dimensions)) |
| 274 |
for dimname in var.dimensions: |
| 275 |
dimid = self._dims.index(dimname)
|
| 276 |
self._pack_int(dimid)
|
| 277 |
|
| 278 |
self._write_att_array(var._attributes)
|
| 279 |
|
| 280 |
nc_type = REVERSE[var.typecode()] |
| 281 |
self.fp.write(nc_type)
|
| 282 |
|
| 283 |
if not var.isrec: |
| 284 |
vsize = var.data.size * var.data.itemsize |
| 285 |
vsize += -vsize % 4
|
| 286 |
else: # record variable |
| 287 |
try:
|
| 288 |
vsize = var.data[0].size * var.data.itemsize
|
| 289 |
except IndexError: |
| 290 |
vsize = 0
|
| 291 |
rec_vars = len([var for var in self.variables.values() |
| 292 |
if var.isrec])
|
| 293 |
if rec_vars > 1: |
| 294 |
vsize += -vsize % 4
|
| 295 |
self.variables[name].__dict__['_vsize'] = vsize |
| 296 |
self._pack_int(vsize)
|
| 297 |
|
| 298 |
# Pack a bogus begin, and set the real value later.
|
| 299 |
self.variables[name].__dict__['_begin'] = self.fp.tell() |
| 300 |
self._pack_begin(0) |
| 301 |
|
| 302 |
def _write_var_data(self, name): |
| 303 |
var = self.variables[name]
|
| 304 |
|
| 305 |
# Set begin in file header.
|
| 306 |
the_beguine = self.fp.tell()
|
| 307 |
self.fp.seek(var._begin)
|
| 308 |
self._pack_begin(the_beguine)
|
| 309 |
self.fp.seek(the_beguine)
|
| 310 |
|
| 311 |
# Write data.
|
| 312 |
if not var.isrec: |
| 313 |
self.fp.write(var.data.tostring())
|
| 314 |
count = var.data.size * var.data.itemsize |
| 315 |
self.fp.write('0' * (var._vsize - count)) |
| 316 |
else: # record variable |
| 317 |
# Handle rec vars with shape[0] < nrecs.
|
| 318 |
if self._recs > len(var.data): |
| 319 |
shape = (self._recs,) + var.data.shape[1:] |
| 320 |
var.data.resize(shape) |
| 321 |
|
| 322 |
pos0 = pos = self.fp.tell()
|
| 323 |
for rec in var.data: |
| 324 |
# Apparently scalars cannot be converted to big endian. If we
|
| 325 |
# try to convert a ``=i4`` scalar to, say, '>i4' the dtype
|
| 326 |
# will remain as ``=i4``.
|
| 327 |
if not rec.shape and (rec.dtype.byteorder == '<' or |
| 328 |
(rec.dtype.byteorder == '=' and LITTLE_ENDIAN)): |
| 329 |
rec = rec.byteswap() |
| 330 |
self.fp.write(rec.tostring())
|
| 331 |
# Padding
|
| 332 |
count = rec.size * rec.itemsize |
| 333 |
self.fp.write('0' * (var._vsize - count)) |
| 334 |
pos += self._recsize
|
| 335 |
self.fp.seek(pos)
|
| 336 |
self.fp.seek(pos0 + var._vsize)
|
| 337 |
|
| 338 |
def _write_values(self, values): |
| 339 |
values = asarray(values) |
| 340 |
values = values.astype(values.dtype.newbyteorder('>'))
|
| 341 |
|
| 342 |
nc_type = REVERSE[values.dtype.char] |
| 343 |
self.fp.write(nc_type)
|
| 344 |
|
| 345 |
if values.dtype.char == 'S': |
| 346 |
nelems = values.itemsize |
| 347 |
else:
|
| 348 |
nelems = values.size |
| 349 |
self._pack_int(nelems)
|
| 350 |
|
| 351 |
if not values.shape and (values.dtype.byteorder == '<' or |
| 352 |
(values.dtype.byteorder == '=' and LITTLE_ENDIAN)): |
| 353 |
values = values.byteswap() |
| 354 |
self.fp.write(values.tostring())
|
| 355 |
count = values.size * values.itemsize |
| 356 |
self.fp.write('0' * (-count % 4)) # pad |
| 357 |
|
| 358 |
def _read(self): |
| 359 |
# Check magic bytes and version
|
| 360 |
assert self.fp.read(3) == 'CDF', "Error: %s is not a valid NetCDF 3 file" % self.filename |
| 361 |
self.__dict__['version_byte'] = fromstring(self.fp.read(1), '>b')[0] |
| 362 |
|
| 363 |
# Read file headers and set data.
|
| 364 |
self._read_numrecs()
|
| 365 |
self._read_dim_array()
|
| 366 |
self._read_gatt_array()
|
| 367 |
self._read_var_array()
|
| 368 |
|
| 369 |
def _read_numrecs(self): |
| 370 |
self.__dict__['_recs'] = self._unpack_int() |
| 371 |
|
| 372 |
def _read_dim_array(self): |
| 373 |
assert self.fp.read(4) in [ZERO, NC_DIMENSION] |
| 374 |
count = self._unpack_int()
|
| 375 |
|
| 376 |
for dim in range(count): |
| 377 |
name = self._unpack_string()
|
| 378 |
length = self._unpack_int() or None # None for record dimension |
| 379 |
self.dimensions[name] = length
|
| 380 |
self._dims.append(name) # preserve order |
| 381 |
|
| 382 |
def _read_gatt_array(self): |
| 383 |
for k, v in self._read_att_array().items(): |
| 384 |
self.__setattr__(k, v)
|
| 385 |
|
| 386 |
def _read_att_array(self): |
| 387 |
assert self.fp.read(4) in [ZERO, NC_ATTRIBUTE] |
| 388 |
count = self._unpack_int()
|
| 389 |
|
| 390 |
attributes = {}
|
| 391 |
for attr in range(count): |
| 392 |
name = self._unpack_string()
|
| 393 |
attributes[name] = self._read_values()
|
| 394 |
return attributes
|
| 395 |
|
| 396 |
def _read_var_array(self): |
| 397 |
assert self.fp.read(4) in [ZERO, NC_VARIABLE] |
| 398 |
|
| 399 |
begin = 0
|
| 400 |
dtypes = {'names': [], 'formats': []}
|
| 401 |
rec_vars = [] |
| 402 |
count = self._unpack_int()
|
| 403 |
for var in range(count): |
| 404 |
name, dimensions, shape, attributes, typecode, size, dtype_, begin_, vsize = self._read_var()
|
| 405 |
if shape and shape[0] is None: |
| 406 |
rec_vars.append(name) |
| 407 |
self.__dict__['_recsize'] += vsize |
| 408 |
if begin == 0: begin = begin_ |
| 409 |
dtypes['names'].append(name)
|
| 410 |
dtypes['formats'].append(str(shape[1:]) + dtype_) |
| 411 |
|
| 412 |
# Handle padding with a virtual variable.
|
| 413 |
if typecode in 'bch': |
| 414 |
actual_size = reduce(mul, (1,) + shape[1:]) * size |
| 415 |
padding = -actual_size % 4
|
| 416 |
if padding:
|
| 417 |
dtypes['names'].append('_padding_%d' % var) |
| 418 |
dtypes['formats'].append('(%d,)>b' % padding) |
| 419 |
|
| 420 |
# Data will be set later.
|
| 421 |
data = None
|
| 422 |
else:
|
| 423 |
if self.use_mmap: |
| 424 |
mm = mmap(self.fp.fileno(), begin_+vsize, access=ACCESS_READ)
|
| 425 |
data = ndarray.__new__(ndarray, shape, dtype=dtype_, |
| 426 |
buffer=mm, offset=begin_, order=0)
|
| 427 |
else:
|
| 428 |
pos = self.fp.tell()
|
| 429 |
self.fp.seek(begin_)
|
| 430 |
data = fromstring(self.fp.read(vsize), dtype=dtype_)
|
| 431 |
data.shape = shape |
| 432 |
self.fp.seek(pos)
|
| 433 |
|
| 434 |
# Add variable.
|
| 435 |
self.variables[name] = netcdf_variable(
|
| 436 |
data, typecode, shape, dimensions, attributes) |
| 437 |
|
| 438 |
if rec_vars:
|
| 439 |
# Remove padding when only one record variable.
|
| 440 |
if len(rec_vars) == 1: |
| 441 |
dtypes['names'] = dtypes['names'][:1] |
| 442 |
dtypes['formats'] = dtypes['formats'][:1] |
| 443 |
|
| 444 |
# Build rec array.
|
| 445 |
if self.use_mmap: |
| 446 |
mm = mmap(self.fp.fileno(), begin+self._recs*self._recsize, access=ACCESS_READ) |
| 447 |
rec_array = ndarray.__new__(ndarray, (self._recs,), dtype=dtypes,
|
| 448 |
buffer=mm, offset=begin, order=0)
|
| 449 |
else:
|
| 450 |
pos = self.fp.tell()
|
| 451 |
self.fp.seek(begin)
|
| 452 |
rec_array = fromstring(self.fp.read(self._recs*self._recsize), dtype=dtypes) |
| 453 |
rec_array.shape = (self._recs,)
|
| 454 |
self.fp.seek(pos)
|
| 455 |
|
| 456 |
for var in rec_vars: |
| 457 |
self.variables[var].__dict__['data'] = rec_array[var] |
| 458 |
|
| 459 |
def _read_var(self): |
| 460 |
name = self._unpack_string()
|
| 461 |
dimensions = [] |
| 462 |
shape = [] |
| 463 |
dims = self._unpack_int()
|
| 464 |
|
| 465 |
for i in range(dims): |
| 466 |
dimid = self._unpack_int()
|
| 467 |
dimname = self._dims[dimid]
|
| 468 |
dimensions.append(dimname) |
| 469 |
dim = self.dimensions[dimname]
|
| 470 |
shape.append(dim) |
| 471 |
dimensions = tuple(dimensions)
|
| 472 |
shape = tuple(shape)
|
| 473 |
|
| 474 |
attributes = self._read_att_array()
|
| 475 |
nc_type = self.fp.read(4) |
| 476 |
vsize = self._unpack_int()
|
| 477 |
begin = [self._unpack_int, self._unpack_int64][self.version_byte-1]() |
| 478 |
|
| 479 |
typecode, size = TYPEMAP[nc_type] |
| 480 |
if typecode is 'c': |
| 481 |
dtype_ = '>c'
|
| 482 |
else:
|
| 483 |
dtype_ = '>%s' % typecode
|
| 484 |
if size > 1: dtype_ += str(size) |
| 485 |
|
| 486 |
return name, dimensions, shape, attributes, typecode, size, dtype_, begin, vsize
|
| 487 |
|
| 488 |
def _read_values(self): |
| 489 |
nc_type = self.fp.read(4) |
| 490 |
n = self._unpack_int()
|
| 491 |
|
| 492 |
typecode, size = TYPEMAP[nc_type] |
| 493 |
|
| 494 |
count = n*size |
| 495 |
values = self.fp.read(count)
|
| 496 |
self.fp.read(-count % 4) # read padding |
| 497 |
|
| 498 |
if typecode is not 'c': |
| 499 |
values = fromstring(values, dtype='>%s%d' % (typecode, size))
|
| 500 |
if values.shape == (1,): values = values[0] |
| 501 |
else:
|
| 502 |
values = values.rstrip('\x00')
|
| 503 |
return values
|
| 504 |
|
| 505 |
def _pack_begin(self, begin): |
| 506 |
if self.version_byte == 1: |
| 507 |
self._pack_int(begin)
|
| 508 |
elif self.version_byte == 2: |
| 509 |
self._pack_int64(begin)
|
| 510 |
|
| 511 |
def _pack_int(self, value): |
| 512 |
self.fp.write(array(value, '>i').tostring()) |
| 513 |
_pack_int32 = _pack_int |
| 514 |
|
| 515 |
def _unpack_int(self): |
| 516 |
return int(fromstring(self.fp.read(4), '>i')[0]) |
| 517 |
_unpack_int32 = _unpack_int |
| 518 |
|
| 519 |
def _pack_int64(self, value): |
| 520 |
self.fp.write(array(value, '>q').tostring()) |
| 521 |
|
| 522 |
def _unpack_int64(self): |
| 523 |
return int(fromstring(self.fp.read(8), '>q')[0]) |
| 524 |
|
| 525 |
def _pack_string(self, s): |
| 526 |
count = len(s)
|
| 527 |
self._pack_int(count)
|
| 528 |
self.fp.write(s)
|
| 529 |
self.fp.write('0' * (-count % 4)) # pad |
| 530 |
|
| 531 |
def _unpack_string(self): |
| 532 |
count = self._unpack_int()
|
| 533 |
s = self.fp.read(count).rstrip('\x00') |
| 534 |
self.fp.read(-count % 4) # read padding |
| 535 |
return s
|
| 536 |
|
| 537 |
|
| 538 |
class netcdf_variable(object): |
| 539 |
"""
|
| 540 |
``netcdf_variable`` objects are constructed by calling the method
|
| 541 |
``createVariable`` on the netcdf_file object.
|
| 542 |
|
| 543 |
``netcdf_variable`` objects behave much like array objects defined in
|
| 544 |
Numpy, except that their data resides in a file. Data is read by
|
| 545 |
indexing and written by assigning to an indexed subset; the entire
|
| 546 |
array can be accessed by the index ``[:]`` or using the methods
|
| 547 |
``getValue`` and ``assignValue``. ``netcdf_variable`` objects also
|
| 548 |
have attribute ``shape`` with the same meaning as for arrays, but
|
| 549 |
the shape cannot be modified. There is another read-only attribute
|
| 550 |
``dimensions``, whose value is the tuple of dimension names.
|
| 551 |
|
| 552 |
All other attributes correspond to variable attributes defined in
|
| 553 |
the NetCDF file. Variable attributes are created by assigning to an
|
| 554 |
attribute of the ``netcdf_variable`` object.
|
| 555 |
|
| 556 |
"""
|
| 557 |
def __init__(self, data, typecode, shape, dimensions, attributes=None): |
| 558 |
self.data = data
|
| 559 |
self._typecode = typecode
|
| 560 |
self._shape = shape
|
| 561 |
self.dimensions = dimensions
|
| 562 |
|
| 563 |
self._attributes = attributes or {} |
| 564 |
for k, v in self._attributes.items(): |
| 565 |
self.__dict__[k] = v
|
| 566 |
|
| 567 |
def __setattr__(self, attr, value): |
| 568 |
# Store user defined attributes in a separate dict,
|
| 569 |
# so we can save them to file later.
|
| 570 |
try:
|
| 571 |
self._attributes[attr] = value
|
| 572 |
except AttributeError: |
| 573 |
pass
|
| 574 |
self.__dict__[attr] = value
|
| 575 |
|
| 576 |
def isrec(self): |
| 577 |
return self.data.shape and not self._shape[0] |
| 578 |
isrec = property(isrec)
|
| 579 |
|
| 580 |
def shape(self): |
| 581 |
return self.data.shape |
| 582 |
shape = property(shape)
|
| 583 |
|
| 584 |
def getValue(self): |
| 585 |
return self.data.item() |
| 586 |
|
| 587 |
def assignValue(self, value): |
| 588 |
self.data.itemset(value)
|
| 589 |
|
| 590 |
def typecode(self): |
| 591 |
return self._typecode |
| 592 |
|
| 593 |
def __getitem__(self, index): |
| 594 |
return self.data[index] |
| 595 |
|
| 596 |
def __setitem__(self, index, data): |
| 597 |
# Expand data for record vars?
|
| 598 |
if self.isrec: |
| 599 |
if isinstance(index, tuple): |
| 600 |
rec_index = index[0]
|
| 601 |
else:
|
| 602 |
rec_index = index |
| 603 |
if isinstance(rec_index, slice): |
| 604 |
recs = (rec_index.start or 0) + len(data) |
| 605 |
else:
|
| 606 |
recs = rec_index + 1
|
| 607 |
if recs > len(self.data): |
| 608 |
shape = (recs,) + self._shape[1:] |
| 609 |
self.data.resize(shape)
|
| 610 |
self.data[index] = data
|
| 611 |
|
| 612 |
|
| 613 |
NetCDFFile = netcdf_file |
| 614 |
NetCDFVariable = netcdf_variable |