root / ase / optimize / bfgslinesearch.py @ 14
Historique | Voir | Annoter | Télécharger (14,89 ko)
| 1 | 1 | tkerber | #__docformat__ = "restructuredtext en"
|
|---|---|---|---|
| 2 | 1 | tkerber | # ******NOTICE***************
|
| 3 | 1 | tkerber | # optimize.py module by Travis E. Oliphant
|
| 4 | 1 | tkerber | #
|
| 5 | 1 | tkerber | # You may copy and use this module as you see fit with no
|
| 6 | 1 | tkerber | # guarantee implied provided you keep this notice in all copies.
|
| 7 | 1 | tkerber | # *****END NOTICE************
|
| 8 | 1 | tkerber | |
| 9 | 1 | tkerber | import numpy as np |
| 10 | 1 | tkerber | from numpy import atleast_1d, eye, mgrid, argmin, zeros, shape, empty, \ |
| 11 | 1 | tkerber | squeeze, vectorize, asarray, absolute, sqrt, Inf, asfarray, isinf |
| 12 | 1 | tkerber | from ase.utils.linesearch import LineSearch |
| 13 | 1 | tkerber | from ase.optimize.optimize import Optimizer |
| 14 | 1 | tkerber | from numpy import arange |
| 15 | 1 | tkerber | |
| 16 | 1 | tkerber | |
| 17 | 1 | tkerber | # These have been copied from Numeric's MLab.py
|
| 18 | 1 | tkerber | # I don't think they made the transition to scipy_core
|
| 19 | 1 | tkerber | |
| 20 | 1 | tkerber | # Modified from scipy_optimize
|
| 21 | 1 | tkerber | abs = absolute |
| 22 | 1 | tkerber | import __builtin__ |
| 23 | 1 | tkerber | pymin = __builtin__.min |
| 24 | 1 | tkerber | pymax = __builtin__.max |
| 25 | 1 | tkerber | __version__="0.1"
|
| 26 | 1 | tkerber | |
| 27 | 1 | tkerber | class BFGSLineSearch(Optimizer): |
| 28 | 1 | tkerber | def __init__(self, atoms, restart=None, logfile='-', maxstep=.2, |
| 29 | 1 | tkerber | trajectory=None, c1=.23, c2=0.46, alpha=10., stpmax=50.): |
| 30 | 1 | tkerber | """Minimize a function using the BFGS algorithm.
|
| 31 | 1 | tkerber |
|
| 32 | 1 | tkerber | Notes:
|
| 33 | 1 | tkerber |
|
| 34 | 1 | tkerber | Optimize the function, f, whose gradient is given by fprime
|
| 35 | 1 | tkerber | using the quasi-Newton method of Broyden, Fletcher, Goldfarb,
|
| 36 | 1 | tkerber | and Shanno (BFGS) See Wright, and Nocedal 'Numerical
|
| 37 | 1 | tkerber | Optimization', 1999, pg. 198.
|
| 38 | 1 | tkerber |
|
| 39 | 1 | tkerber | *See Also*:
|
| 40 | 1 | tkerber |
|
| 41 | 1 | tkerber | scikits.openopt : SciKit which offers a unified syntax to call
|
| 42 | 1 | tkerber | this and other solvers.
|
| 43 | 1 | tkerber |
|
| 44 | 1 | tkerber | """
|
| 45 | 1 | tkerber | self.maxstep = maxstep
|
| 46 | 1 | tkerber | self.stpmax = stpmax
|
| 47 | 1 | tkerber | self.alpha = alpha
|
| 48 | 1 | tkerber | self.H = None |
| 49 | 1 | tkerber | self.c1 = c1
|
| 50 | 1 | tkerber | self.c2 = c2
|
| 51 | 1 | tkerber | self.force_calls = 0 |
| 52 | 1 | tkerber | self.function_calls = 0 |
| 53 | 1 | tkerber | self.r0 = None |
| 54 | 1 | tkerber | self.g0 = None |
| 55 | 1 | tkerber | self.e0 = None |
| 56 | 1 | tkerber | self.load_restart = False |
| 57 | 1 | tkerber | self.task = 'START' |
| 58 | 1 | tkerber | self.rep_count = 0 |
| 59 | 1 | tkerber | self.p = None |
| 60 | 1 | tkerber | self.alpha_k = None |
| 61 | 1 | tkerber | self.no_update = False |
| 62 | 1 | tkerber | self.replay = False |
| 63 | 1 | tkerber | |
| 64 | 1 | tkerber | Optimizer.__init__(self, atoms, restart, logfile, trajectory)
|
| 65 | 1 | tkerber | |
| 66 | 1 | tkerber | def read(self): |
| 67 | 1 | tkerber | self.r0, self.g0, self.e0, self.task, self.H = self.load() |
| 68 | 1 | tkerber | self.load_restart = True |
| 69 | 1 | tkerber | |
| 70 | 1 | tkerber | def reset(self): |
| 71 | 1 | tkerber | print 'reset' |
| 72 | 1 | tkerber | self.H = None |
| 73 | 1 | tkerber | self.r0 = None |
| 74 | 1 | tkerber | self.g0 = None |
| 75 | 1 | tkerber | self.e0 = None |
| 76 | 1 | tkerber | self.rep_count = 0 |
| 77 | 1 | tkerber | |
| 78 | 1 | tkerber | |
| 79 | 1 | tkerber | def step(self, f): |
| 80 | 1 | tkerber | atoms = self.atoms
|
| 81 | 1 | tkerber | r = atoms.get_positions() |
| 82 | 1 | tkerber | r = r.reshape(-1)
|
| 83 | 1 | tkerber | g = -f.reshape(-1) / self.alpha |
| 84 | 1 | tkerber | #g = -f.reshape(-1)
|
| 85 | 1 | tkerber | p0 = self.p
|
| 86 | 1 | tkerber | self.update(r, g, self.r0, self.g0, p0) |
| 87 | 1 | tkerber | e = atoms.get_potential_energy() / self.alpha
|
| 88 | 1 | tkerber | #e = self.func(r)
|
| 89 | 1 | tkerber | |
| 90 | 1 | tkerber | self.p = -np.dot(self.H,g) |
| 91 | 1 | tkerber | p_size = np.sqrt((self.p **2).sum()) |
| 92 | 1 | tkerber | if self.nsteps != 0: |
| 93 | 1 | tkerber | p0_size = np.sqrt((p0 **2).sum())
|
| 94 | 1 | tkerber | delta_p = self.p/p_size + p0/p0_size
|
| 95 | 1 | tkerber | if p_size <= np.sqrt(len(atoms) * 1e-10): |
| 96 | 1 | tkerber | self.p /= (p_size / np.sqrt(len(atoms)*1e-10)) |
| 97 | 1 | tkerber | ls = LineSearch() |
| 98 | 1 | tkerber | self.alpha_k, e, self.e0, self.no_update = \ |
| 99 | 1 | tkerber | ls._line_search(self.func, self.fprime, r, self.p, g, e, self.e0, |
| 100 | 1 | tkerber | maxstep=self.maxstep, c1=self.c1, |
| 101 | 1 | tkerber | c2=self.c2, stpmax=self.stpmax) |
| 102 | 1 | tkerber | #if alpha_k is None: # line search failed try different one.
|
| 103 | 1 | tkerber | # alpha_k, fc, gc, e, e0, gfkp1 = \
|
| 104 | 1 | tkerber | # line_search(self.func, self.fprime,r,p,g,
|
| 105 | 1 | tkerber | # e,self.e0)
|
| 106 | 1 | tkerber | #if abs(e - self.e0) < 0.000001:
|
| 107 | 1 | tkerber | # self.rep_count += 1
|
| 108 | 1 | tkerber | #else:
|
| 109 | 1 | tkerber | # self.rep_count = 0
|
| 110 | 1 | tkerber | |
| 111 | 1 | tkerber | #if (alpha_k is None) or (self.rep_count >= 3):
|
| 112 | 1 | tkerber | # # If the line search fails, reset the Hessian matrix and
|
| 113 | 1 | tkerber | # # start a new line search.
|
| 114 | 1 | tkerber | # self.reset()
|
| 115 | 1 | tkerber | # return
|
| 116 | 1 | tkerber | |
| 117 | 1 | tkerber | dr = self.alpha_k * self.p |
| 118 | 1 | tkerber | atoms.set_positions((r+dr).reshape(len(atoms),-1)) |
| 119 | 1 | tkerber | self.r0 = r
|
| 120 | 1 | tkerber | self.g0 = g
|
| 121 | 1 | tkerber | self.dump((self.r0, self.g0, self.e0, self.task, self.H)) |
| 122 | 1 | tkerber | |
| 123 | 1 | tkerber | def update(self, r, g, r0, g0, p0): |
| 124 | 1 | tkerber | self.I = eye(len(self.atoms) * 3, dtype=int) |
| 125 | 1 | tkerber | if self.H is None: |
| 126 | 1 | tkerber | self.H = eye(3 * len(self.atoms)) |
| 127 | 1 | tkerber | #self.H = eye(3 * len(self.atoms)) / self.alpha
|
| 128 | 1 | tkerber | return
|
| 129 | 1 | tkerber | else:
|
| 130 | 1 | tkerber | dr = r - r0 |
| 131 | 1 | tkerber | dg = g - g0 |
| 132 | 1 | tkerber | if not ((self.alpha_k > 0 and abs(np.dot(g,p0))-abs(np.dot(g0,p0)) < 0) \ |
| 133 | 1 | tkerber | or self.replay): |
| 134 | 1 | tkerber | return
|
| 135 | 1 | tkerber | if self.no_update == True: |
| 136 | 1 | tkerber | print 'skip update' |
| 137 | 1 | tkerber | return
|
| 138 | 1 | tkerber | |
| 139 | 1 | tkerber | try: # this was handled in numeric, let it remaines for more safety |
| 140 | 1 | tkerber | rhok = 1.0 / (np.dot(dg,dr))
|
| 141 | 1 | tkerber | except ZeroDivisionError: |
| 142 | 1 | tkerber | rhok = 1000.0
|
| 143 | 1 | tkerber | print "Divide-by-zero encountered: rhok assumed large" |
| 144 | 1 | tkerber | if isinf(rhok): # this is patch for np |
| 145 | 1 | tkerber | rhok = 1000.0
|
| 146 | 1 | tkerber | print "Divide-by-zero encountered: rhok assumed large" |
| 147 | 1 | tkerber | A1 = self.I - dr[:, np.newaxis] * dg[np.newaxis, :] * rhok
|
| 148 | 1 | tkerber | A2 = self.I - dg[:, np.newaxis] * dr[np.newaxis, :] * rhok
|
| 149 | 1 | tkerber | H0 = self.H
|
| 150 | 1 | tkerber | self.H = np.dot(A1, np.dot(self.H, A2)) + rhok * dr[:, np.newaxis] \ |
| 151 | 1 | tkerber | * dr[np.newaxis, :] |
| 152 | 1 | tkerber | #self.B = np.linalg.inv(self.H)
|
| 153 | 1 | tkerber | #omega, V = np.linalg.eigh(self.B)
|
| 154 | 1 | tkerber | #eighfile = open('eigh.log','w')
|
| 155 | 1 | tkerber | |
| 156 | 1 | tkerber | def func(self, x): |
| 157 | 1 | tkerber | """Objective function for use of the optimizers"""
|
| 158 | 1 | tkerber | self.atoms.set_positions(x.reshape(-1, 3)) |
| 159 | 1 | tkerber | self.function_calls += 1 |
| 160 | 1 | tkerber | # Scale the problem as SciPy uses I as initial Hessian.
|
| 161 | 1 | tkerber | return self.atoms.get_potential_energy() / self.alpha |
| 162 | 1 | tkerber | #return self.atoms.get_potential_energy()
|
| 163 | 1 | tkerber | |
| 164 | 1 | tkerber | def fprime(self, x): |
| 165 | 1 | tkerber | """Gradient of the objective function for use of the optimizers"""
|
| 166 | 1 | tkerber | self.atoms.set_positions(x.reshape(-1, 3)) |
| 167 | 1 | tkerber | self.force_calls += 1 |
| 168 | 1 | tkerber | # Remember that forces are minus the gradient!
|
| 169 | 1 | tkerber | # Scale the problem as SciPy uses I as initial Hessian.
|
| 170 | 1 | tkerber | return - self.atoms.get_forces().reshape(-1) / self.alpha |
| 171 | 1 | tkerber | #return - self.atoms.get_forces().reshape(-1)
|
| 172 | 1 | tkerber | |
| 173 | 1 | tkerber | def replay_trajectory(self, traj): |
| 174 | 1 | tkerber | """Initialize hessian from old trajectory."""
|
| 175 | 1 | tkerber | self.replay = True |
| 176 | 1 | tkerber | if isinstance(traj, str): |
| 177 | 1 | tkerber | from ase.io.trajectory import PickleTrajectory |
| 178 | 1 | tkerber | traj = PickleTrajectory(traj, 'r')
|
| 179 | 1 | tkerber | atoms = traj[0]
|
| 180 | 1 | tkerber | r0 = None
|
| 181 | 1 | tkerber | g0 = None
|
| 182 | 1 | tkerber | for i in range(0, len(traj) - 1): |
| 183 | 1 | tkerber | r = traj[i].get_positions().ravel() |
| 184 | 1 | tkerber | g = - traj[i].get_forces().ravel() / self.alpha
|
| 185 | 1 | tkerber | self.update(r, g, r0, g0, self.p) |
| 186 | 1 | tkerber | self.p = -np.dot(self.H,g) |
| 187 | 1 | tkerber | r0 = r.copy() |
| 188 | 1 | tkerber | g0 = g.copy() |
| 189 | 1 | tkerber | self.r0 = r0
|
| 190 | 1 | tkerber | self.g0 = g0
|
| 191 | 1 | tkerber | #self.r0 = traj[-2].get_positions().ravel()
|
| 192 | 1 | tkerber | #self.g0 = - traj[-2].get_forces().ravel()
|
| 193 | 1 | tkerber | |
| 194 | 1 | tkerber | def wrap_function(function, args): |
| 195 | 1 | tkerber | ncalls = [0]
|
| 196 | 1 | tkerber | def function_wrapper(x): |
| 197 | 1 | tkerber | ncalls[0] += 1 |
| 198 | 1 | tkerber | return function(x, *args)
|
| 199 | 1 | tkerber | return ncalls, function_wrapper
|
| 200 | 1 | tkerber | |
| 201 | 1 | tkerber | def _cubicmin(a,fa,fpa,b,fb,c,fc): |
| 202 | 1 | tkerber | # finds the minimizer for a cubic polynomial that goes through the
|
| 203 | 1 | tkerber | # points (a,fa), (b,fb), and (c,fc) with derivative at a of fpa.
|
| 204 | 1 | tkerber | #
|
| 205 | 1 | tkerber | # if no minimizer can be found return None
|
| 206 | 1 | tkerber | #
|
| 207 | 1 | tkerber | # f(x) = A *(x-a)^3 + B*(x-a)^2 + C*(x-a) + D
|
| 208 | 1 | tkerber | |
| 209 | 1 | tkerber | C = fpa |
| 210 | 1 | tkerber | D = fa |
| 211 | 1 | tkerber | db = b-a |
| 212 | 1 | tkerber | dc = c-a |
| 213 | 1 | tkerber | if (db == 0) or (dc == 0) or (b==c): return None |
| 214 | 1 | tkerber | denom = (db*dc)**2 * (db-dc)
|
| 215 | 1 | tkerber | d1 = empty((2,2)) |
| 216 | 1 | tkerber | d1[0,0] = dc**2 |
| 217 | 1 | tkerber | d1[0,1] = -db**2 |
| 218 | 1 | tkerber | d1[1,0] = -dc**3 |
| 219 | 1 | tkerber | d1[1,1] = db**3 |
| 220 | 1 | tkerber | [A,B] = np.dot(d1,asarray([fb-fa-C*db,fc-fa-C*dc]).flatten()) |
| 221 | 1 | tkerber | A /= denom |
| 222 | 1 | tkerber | B /= denom |
| 223 | 1 | tkerber | radical = B*B-3*A*C
|
| 224 | 1 | tkerber | if radical < 0: return None |
| 225 | 1 | tkerber | if (A == 0): return None |
| 226 | 1 | tkerber | xmin = a + (-B + sqrt(radical))/(3*A)
|
| 227 | 1 | tkerber | return xmin
|
| 228 | 1 | tkerber | |
| 229 | 1 | tkerber | def _quadmin(a,fa,fpa,b,fb): |
| 230 | 1 | tkerber | # finds the minimizer for a quadratic polynomial that goes through
|
| 231 | 1 | tkerber | # the points (a,fa), (b,fb) with derivative at a of fpa
|
| 232 | 1 | tkerber | # f(x) = B*(x-a)^2 + C*(x-a) + D
|
| 233 | 1 | tkerber | D = fa |
| 234 | 1 | tkerber | C = fpa |
| 235 | 1 | tkerber | db = b-a*1.0
|
| 236 | 1 | tkerber | if (db==0): return None |
| 237 | 1 | tkerber | B = (fb-D-C*db)/(db*db) |
| 238 | 1 | tkerber | if (B <= 0): return None |
| 239 | 1 | tkerber | xmin = a - C / (2.0*B)
|
| 240 | 1 | tkerber | return xmin
|
| 241 | 1 | tkerber | |
| 242 | 1 | tkerber | def zoom(a_lo, a_hi, phi_lo, phi_hi, derphi_lo, |
| 243 | 1 | tkerber | phi, derphi, phi0, derphi0, c1, c2): |
| 244 | 1 | tkerber | maxiter = 10
|
| 245 | 1 | tkerber | i = 0
|
| 246 | 1 | tkerber | delta1 = 0.2 # cubic interpolant check |
| 247 | 1 | tkerber | delta2 = 0.1 # quadratic interpolant check |
| 248 | 1 | tkerber | phi_rec = phi0 |
| 249 | 1 | tkerber | a_rec = 0
|
| 250 | 1 | tkerber | while 1: |
| 251 | 1 | tkerber | # interpolate to find a trial step length between a_lo and a_hi
|
| 252 | 1 | tkerber | # Need to choose interpolation here. Use cubic interpolation and then
|
| 253 | 1 | tkerber | #if the result is within delta * dalpha or outside of the interval
|
| 254 | 1 | tkerber | #bounded by a_lo or a_hi then use quadratic interpolation, if the
|
| 255 | 1 | tkerber | #result is still too close, then use bisection
|
| 256 | 1 | tkerber | |
| 257 | 1 | tkerber | dalpha = a_hi-a_lo; |
| 258 | 1 | tkerber | if dalpha < 0: a,b = a_hi,a_lo |
| 259 | 1 | tkerber | else: a,b = a_lo, a_hi
|
| 260 | 1 | tkerber | |
| 261 | 1 | tkerber | # minimizer of cubic interpolant
|
| 262 | 1 | tkerber | # (uses phi_lo, derphi_lo, phi_hi, and the most recent value of phi)
|
| 263 | 1 | tkerber | # if the result is too close to the end points (or out of the
|
| 264 | 1 | tkerber | # interval) then use quadratic interpolation with phi_lo,
|
| 265 | 1 | tkerber | # derphi_lo and phi_hi
|
| 266 | 1 | tkerber | # if the result is stil too close to the end points (or out of
|
| 267 | 1 | tkerber | # the interval) then use bisection
|
| 268 | 1 | tkerber | |
| 269 | 1 | tkerber | if (i > 0): |
| 270 | 1 | tkerber | cchk = delta1*dalpha |
| 271 | 1 | tkerber | a_j = _cubicmin(a_lo, phi_lo, derphi_lo, a_hi, phi_hi, a_rec, |
| 272 | 1 | tkerber | phi_rec) |
| 273 | 1 | tkerber | if (i==0) or (a_j is None) or (a_j > b-cchk) or (a_j < a+cchk): |
| 274 | 1 | tkerber | qchk = delta2*dalpha |
| 275 | 1 | tkerber | a_j = _quadmin(a_lo, phi_lo, derphi_lo, a_hi, phi_hi) |
| 276 | 1 | tkerber | if (a_j is None) or (a_j > b-qchk) or (a_j < a+qchk): |
| 277 | 1 | tkerber | a_j = a_lo + 0.5*dalpha
|
| 278 | 1 | tkerber | # print "Using bisection."
|
| 279 | 1 | tkerber | # else: print "Using quadratic."
|
| 280 | 1 | tkerber | # else: print "Using cubic."
|
| 281 | 1 | tkerber | |
| 282 | 1 | tkerber | # Check new value of a_j
|
| 283 | 1 | tkerber | |
| 284 | 1 | tkerber | phi_aj = phi(a_j) |
| 285 | 1 | tkerber | if (phi_aj > phi0 + c1*a_j*derphi0) or (phi_aj >= phi_lo): |
| 286 | 1 | tkerber | phi_rec = phi_hi |
| 287 | 1 | tkerber | a_rec = a_hi |
| 288 | 1 | tkerber | a_hi = a_j |
| 289 | 1 | tkerber | phi_hi = phi_aj |
| 290 | 1 | tkerber | else:
|
| 291 | 1 | tkerber | derphi_aj = derphi(a_j) |
| 292 | 1 | tkerber | if abs(derphi_aj) <= -c2*derphi0: |
| 293 | 1 | tkerber | a_star = a_j |
| 294 | 1 | tkerber | val_star = phi_aj |
| 295 | 1 | tkerber | valprime_star = derphi_aj |
| 296 | 1 | tkerber | break
|
| 297 | 1 | tkerber | if derphi_aj*(a_hi - a_lo) >= 0: |
| 298 | 1 | tkerber | phi_rec = phi_hi |
| 299 | 1 | tkerber | a_rec = a_hi |
| 300 | 1 | tkerber | a_hi = a_lo |
| 301 | 1 | tkerber | phi_hi = phi_lo |
| 302 | 1 | tkerber | else:
|
| 303 | 1 | tkerber | phi_rec = phi_lo |
| 304 | 1 | tkerber | a_rec = a_lo |
| 305 | 1 | tkerber | a_lo = a_j |
| 306 | 1 | tkerber | phi_lo = phi_aj |
| 307 | 1 | tkerber | derphi_lo = derphi_aj |
| 308 | 1 | tkerber | i += 1
|
| 309 | 1 | tkerber | if (i > maxiter):
|
| 310 | 1 | tkerber | a_star = a_j |
| 311 | 1 | tkerber | val_star = phi_aj |
| 312 | 1 | tkerber | valprime_star = None
|
| 313 | 1 | tkerber | break
|
| 314 | 1 | tkerber | return a_star, val_star, valprime_star
|
| 315 | 1 | tkerber | |
| 316 | 1 | tkerber | def line_search(f, myfprime, xk, pk, gfk, old_fval, old_old_fval, |
| 317 | 1 | tkerber | args=(), c1=1e-4, c2=0.9, amax=50): |
| 318 | 1 | tkerber | """Find alpha that satisfies strong Wolfe conditions.
|
| 319 | 1 | tkerber |
|
| 320 | 1 | tkerber | Parameters:
|
| 321 | 1 | tkerber |
|
| 322 | 1 | tkerber | f : callable f(x,*args)
|
| 323 | 1 | tkerber | Objective function.
|
| 324 | 1 | tkerber | myfprime : callable f'(x,*args)
|
| 325 | 1 | tkerber | Objective function gradient (can be None).
|
| 326 | 1 | tkerber | xk : ndarray
|
| 327 | 1 | tkerber | Starting point.
|
| 328 | 1 | tkerber | pk : ndarray
|
| 329 | 1 | tkerber | Search direction.
|
| 330 | 1 | tkerber | gfk : ndarray
|
| 331 | 1 | tkerber | Gradient value for x=xk (xk being the current parameter
|
| 332 | 1 | tkerber | estimate).
|
| 333 | 1 | tkerber | args : tuple
|
| 334 | 1 | tkerber | Additional arguments passed to objective function.
|
| 335 | 1 | tkerber | c1 : float
|
| 336 | 1 | tkerber | Parameter for Armijo condition rule.
|
| 337 | 1 | tkerber | c2 : float
|
| 338 | 1 | tkerber | Parameter for curvature condition rule.
|
| 339 | 1 | tkerber |
|
| 340 | 1 | tkerber | Returns:
|
| 341 | 1 | tkerber |
|
| 342 | 1 | tkerber | alpha0 : float
|
| 343 | 1 | tkerber | Alpha for which ``x_new = x0 + alpha * pk``.
|
| 344 | 1 | tkerber | fc : int
|
| 345 | 1 | tkerber | Number of function evaluations made.
|
| 346 | 1 | tkerber | gc : int
|
| 347 | 1 | tkerber | Number of gradient evaluations made.
|
| 348 | 1 | tkerber |
|
| 349 | 1 | tkerber | Notes:
|
| 350 | 1 | tkerber |
|
| 351 | 1 | tkerber | Uses the line search algorithm to enforce strong Wolfe
|
| 352 | 1 | tkerber | conditions. See Wright and Nocedal, 'Numerical Optimization',
|
| 353 | 1 | tkerber | 1999, pg. 59-60.
|
| 354 | 1 | tkerber |
|
| 355 | 1 | tkerber | For the zoom phase it uses an algorithm by [...].
|
| 356 | 1 | tkerber |
|
| 357 | 1 | tkerber | """
|
| 358 | 1 | tkerber | |
| 359 | 1 | tkerber | global _ls_fc, _ls_gc, _ls_ingfk
|
| 360 | 1 | tkerber | _ls_fc = 0
|
| 361 | 1 | tkerber | _ls_gc = 0
|
| 362 | 1 | tkerber | _ls_ingfk = None
|
| 363 | 1 | tkerber | def phi(alpha): |
| 364 | 1 | tkerber | global _ls_fc
|
| 365 | 1 | tkerber | _ls_fc += 1
|
| 366 | 1 | tkerber | return f(xk+alpha*pk,*args)
|
| 367 | 1 | tkerber | |
| 368 | 1 | tkerber | if isinstance(myfprime,type(())): |
| 369 | 1 | tkerber | def phiprime(alpha): |
| 370 | 1 | tkerber | global _ls_fc, _ls_ingfk
|
| 371 | 1 | tkerber | _ls_fc += len(xk)+1 |
| 372 | 1 | tkerber | eps = myfprime[1]
|
| 373 | 1 | tkerber | fprime = myfprime[0]
|
| 374 | 1 | tkerber | newargs = (f,eps) + args |
| 375 | 1 | tkerber | _ls_ingfk = fprime(xk+alpha*pk,*newargs) # store for later use
|
| 376 | 1 | tkerber | return np.dot(_ls_ingfk,pk)
|
| 377 | 1 | tkerber | else:
|
| 378 | 1 | tkerber | fprime = myfprime |
| 379 | 1 | tkerber | def phiprime(alpha): |
| 380 | 1 | tkerber | global _ls_gc, _ls_ingfk
|
| 381 | 1 | tkerber | _ls_gc += 1
|
| 382 | 1 | tkerber | _ls_ingfk = fprime(xk+alpha*pk,*args) # store for later use
|
| 383 | 1 | tkerber | return np.dot(_ls_ingfk,pk)
|
| 384 | 1 | tkerber | |
| 385 | 1 | tkerber | |
| 386 | 1 | tkerber | alpha0 = 0
|
| 387 | 1 | tkerber | phi0 = old_fval |
| 388 | 1 | tkerber | derphi0 = np.dot(gfk,pk) |
| 389 | 1 | tkerber | |
| 390 | 1 | tkerber | alpha1 = pymin(1.,1.01*2*(phi0-old_old_fval)/derphi0) |
| 391 | 1 | tkerber | |
| 392 | 1 | tkerber | if alpha1 == 0: |
| 393 | 1 | tkerber | # This shouldn't happen. Perhaps the increment has slipped below
|
| 394 | 1 | tkerber | # machine precision? For now, set the return variables skip the
|
| 395 | 1 | tkerber | # useless while loop, and raise warnflag=2 due to possible imprecision.
|
| 396 | 1 | tkerber | alpha_star = None
|
| 397 | 1 | tkerber | fval_star = old_fval |
| 398 | 1 | tkerber | old_fval = old_old_fval |
| 399 | 1 | tkerber | fprime_star = None
|
| 400 | 1 | tkerber | |
| 401 | 1 | tkerber | phi_a1 = phi(alpha1) |
| 402 | 1 | tkerber | #derphi_a1 = phiprime(alpha1) evaluated below
|
| 403 | 1 | tkerber | |
| 404 | 1 | tkerber | phi_a0 = phi0 |
| 405 | 1 | tkerber | derphi_a0 = derphi0 |
| 406 | 1 | tkerber | |
| 407 | 1 | tkerber | i = 1
|
| 408 | 1 | tkerber | maxiter = 10
|
| 409 | 1 | tkerber | while 1: # bracketing phase |
| 410 | 1 | tkerber | if alpha1 == 0: |
| 411 | 1 | tkerber | break
|
| 412 | 1 | tkerber | if (phi_a1 > phi0 + c1*alpha1*derphi0) or \ |
| 413 | 1 | tkerber | ((phi_a1 >= phi_a0) and (i > 1)): |
| 414 | 1 | tkerber | alpha_star, fval_star, fprime_star = \ |
| 415 | 1 | tkerber | zoom(alpha0, alpha1, phi_a0, |
| 416 | 1 | tkerber | phi_a1, derphi_a0, phi, phiprime, |
| 417 | 1 | tkerber | phi0, derphi0, c1, c2) |
| 418 | 1 | tkerber | break
|
| 419 | 1 | tkerber | |
| 420 | 1 | tkerber | derphi_a1 = phiprime(alpha1) |
| 421 | 1 | tkerber | if (abs(derphi_a1) <= -c2*derphi0): |
| 422 | 1 | tkerber | alpha_star = alpha1 |
| 423 | 1 | tkerber | fval_star = phi_a1 |
| 424 | 1 | tkerber | fprime_star = derphi_a1 |
| 425 | 1 | tkerber | break
|
| 426 | 1 | tkerber | |
| 427 | 1 | tkerber | if (derphi_a1 >= 0): |
| 428 | 1 | tkerber | alpha_star, fval_star, fprime_star = \ |
| 429 | 1 | tkerber | zoom(alpha1, alpha0, phi_a1, |
| 430 | 1 | tkerber | phi_a0, derphi_a1, phi, phiprime, |
| 431 | 1 | tkerber | phi0, derphi0, c1, c2) |
| 432 | 1 | tkerber | break
|
| 433 | 1 | tkerber | |
| 434 | 1 | tkerber | alpha2 = 2 * alpha1 # increase by factor of two on each iteration |
| 435 | 1 | tkerber | i = i + 1
|
| 436 | 1 | tkerber | alpha0 = alpha1 |
| 437 | 1 | tkerber | alpha1 = alpha2 |
| 438 | 1 | tkerber | phi_a0 = phi_a1 |
| 439 | 1 | tkerber | phi_a1 = phi(alpha1) |
| 440 | 1 | tkerber | derphi_a0 = derphi_a1 |
| 441 | 1 | tkerber | |
| 442 | 1 | tkerber | # stopping test if lower function not found
|
| 443 | 1 | tkerber | if (i > maxiter):
|
| 444 | 1 | tkerber | alpha_star = alpha1 |
| 445 | 1 | tkerber | fval_star = phi_a1 |
| 446 | 1 | tkerber | fprime_star = None
|
| 447 | 1 | tkerber | break
|
| 448 | 1 | tkerber | |
| 449 | 1 | tkerber | if fprime_star is not None: |
| 450 | 1 | tkerber | # fprime_star is a number (derphi) -- so use the most recently
|
| 451 | 1 | tkerber | # calculated gradient used in computing it derphi = gfk*pk
|
| 452 | 1 | tkerber | # this is the gradient at the next step no need to compute it
|
| 453 | 1 | tkerber | # again in the outer loop.
|
| 454 | 1 | tkerber | fprime_star = _ls_ingfk |
| 455 | 1 | tkerber | |
| 456 | 1 | tkerber | return alpha_star, _ls_fc, _ls_gc, fval_star, old_fval, fprime_star
|