root / ase / md / nvtberendsen.py @ 14
Historique | Voir | Annoter | Télécharger (3,32 ko)
| 1 | 1 | tkerber | """Berendsen NVT dynamics class."""
|
|---|---|---|---|
| 2 | 1 | tkerber | |
| 3 | 1 | tkerber | import sys |
| 4 | 1 | tkerber | import numpy as np |
| 5 | 1 | tkerber | from ase.md.md import MolecularDynamics |
| 6 | 1 | tkerber | |
| 7 | 1 | tkerber | |
| 8 | 1 | tkerber | # For parallel GPAW simulations, the random forces should be distributed.
|
| 9 | 1 | tkerber | if '_gpaw' in sys.modules: |
| 10 | 1 | tkerber | # http://wiki.fysik.dtu.dk/gpaw
|
| 11 | 1 | tkerber | from gpaw.mpi import world as gpaw_world |
| 12 | 1 | tkerber | else:
|
| 13 | 1 | tkerber | gpaw_world = None
|
| 14 | 1 | tkerber | |
| 15 | 1 | tkerber | |
| 16 | 1 | tkerber | class NVTBerendsen(MolecularDynamics): |
| 17 | 1 | tkerber | """Berendsen (constant N, V, T) molecular dynamics.
|
| 18 | 1 | tkerber |
|
| 19 | 1 | tkerber | Usage: NVTBerendsen(atoms, timestep, temperature, taut, fixcm)
|
| 20 | 1 | tkerber |
|
| 21 | 1 | tkerber | atoms
|
| 22 | 1 | tkerber | The list of atoms.
|
| 23 | 1 | tkerber |
|
| 24 | 1 | tkerber | timestep
|
| 25 | 1 | tkerber | The time step.
|
| 26 | 1 | tkerber |
|
| 27 | 1 | tkerber | temperature
|
| 28 | 1 | tkerber | The desired temperature, in Kelvin.
|
| 29 | 1 | tkerber |
|
| 30 | 1 | tkerber | taut
|
| 31 | 1 | tkerber | Time constant for Berendsen temperature coupling.
|
| 32 | 1 | tkerber |
|
| 33 | 1 | tkerber | fixcm
|
| 34 | 1 | tkerber | If True, the position and momentum of the center of mass is
|
| 35 | 1 | tkerber | kept unperturbed. Default: True.
|
| 36 | 1 | tkerber |
|
| 37 | 1 | tkerber | """
|
| 38 | 1 | tkerber | |
| 39 | 1 | tkerber | def __init__(self, atoms, timestep, temperature, taut, fixcm=True, |
| 40 | 1 | tkerber | trajectory=None, logfile=None, loginterval=1, |
| 41 | 1 | tkerber | communicator=gpaw_world): |
| 42 | 1 | tkerber | |
| 43 | 1 | tkerber | MolecularDynamics.__init__(self, atoms, timestep, trajectory,
|
| 44 | 1 | tkerber | logfile, loginterval) |
| 45 | 1 | tkerber | self.taut = taut
|
| 46 | 1 | tkerber | self.temperature = temperature
|
| 47 | 1 | tkerber | self.fixcm = fixcm # will the center of mass be held fixed? |
| 48 | 1 | tkerber | self.communicator = communicator
|
| 49 | 1 | tkerber | |
| 50 | 1 | tkerber | def set_taut(self, taut): |
| 51 | 1 | tkerber | self.taut = taut
|
| 52 | 1 | tkerber | |
| 53 | 1 | tkerber | def get_taut(self): |
| 54 | 1 | tkerber | return self.taut |
| 55 | 1 | tkerber | |
| 56 | 1 | tkerber | def set_temperature(self, temperature): |
| 57 | 1 | tkerber | self.temperature = temperature
|
| 58 | 1 | tkerber | |
| 59 | 1 | tkerber | def get_temperature(self): |
| 60 | 1 | tkerber | return self.temperature |
| 61 | 1 | tkerber | |
| 62 | 1 | tkerber | def set_timestep(self, timestep): |
| 63 | 1 | tkerber | self.dt = timestep
|
| 64 | 1 | tkerber | |
| 65 | 1 | tkerber | def get_timestep(self): |
| 66 | 1 | tkerber | return self.dt |
| 67 | 1 | tkerber | |
| 68 | 1 | tkerber | def scale_velocities(self): |
| 69 | 1 | tkerber | """ Do the NVT Berendsen velocity scaling """
|
| 70 | 1 | tkerber | tautscl = self.dt / self.taut |
| 71 | 1 | tkerber | old_temperature = self.atoms.get_temperature()
|
| 72 | 1 | tkerber | |
| 73 | 1 | tkerber | scl_temperature = np.sqrt(1.0+ (self.temperature/ old_temperature- 1.0) |
| 74 | 1 | tkerber | *tautscl) |
| 75 | 1 | tkerber | #limit the velocity scaling to reasonable values
|
| 76 | 1 | tkerber | if scl_temperature > 1.1: |
| 77 | 1 | tkerber | scl_temperature = 1.1
|
| 78 | 1 | tkerber | if scl_temperature < 0.9: |
| 79 | 1 | tkerber | scl_temperature = 0.9
|
| 80 | 1 | tkerber | |
| 81 | 1 | tkerber | atoms = self.atoms
|
| 82 | 1 | tkerber | p = self.atoms.get_momenta()
|
| 83 | 1 | tkerber | p = scl_temperature * p |
| 84 | 1 | tkerber | self.atoms.set_momenta(p)
|
| 85 | 1 | tkerber | return
|
| 86 | 1 | tkerber | |
| 87 | 1 | tkerber | |
| 88 | 1 | tkerber | def step(self, f): |
| 89 | 1 | tkerber | """ move one timestep forward using Berenden NVT molecular dynamics."""
|
| 90 | 1 | tkerber | self.scale_velocities()
|
| 91 | 1 | tkerber | |
| 92 | 1 | tkerber | #one step velocity verlet
|
| 93 | 1 | tkerber | atoms = self.atoms
|
| 94 | 1 | tkerber | p = self.atoms.get_momenta()
|
| 95 | 1 | tkerber | p += 0.5 * self.dt * f |
| 96 | 1 | tkerber | |
| 97 | 1 | tkerber | if self.fixcm: |
| 98 | 1 | tkerber | # calculate the center of mass
|
| 99 | 1 | tkerber | # momentum and subtract it
|
| 100 | 1 | tkerber | psum = p.sum(axis=0) / float(len(p)) |
| 101 | 1 | tkerber | p = p - psum |
| 102 | 1 | tkerber | |
| 103 | 1 | tkerber | self.atoms.set_positions(self.atoms.get_positions() + |
| 104 | 1 | tkerber | self.dt * p / self.atoms.get_masses()[:,np.newaxis]) |
| 105 | 1 | tkerber | |
| 106 | 1 | tkerber | # We need to store the momenta on the atoms before calculating
|
| 107 | 1 | tkerber | # the forces, as in a parallel Asap calculation atoms may
|
| 108 | 1 | tkerber | # migrate during force calculations, and the momenta need to
|
| 109 | 1 | tkerber | # migrate along with the atoms. For the same reason, we
|
| 110 | 1 | tkerber | # cannot use self.masses in the line above.
|
| 111 | 1 | tkerber | |
| 112 | 1 | tkerber | self.atoms.set_momenta(p)
|
| 113 | 1 | tkerber | f = self.atoms.get_forces()
|
| 114 | 1 | tkerber | atoms.set_momenta(self.atoms.get_momenta() + 0.5 * self.dt * f) |
| 115 | 1 | tkerber | |
| 116 | 1 | tkerber | return f
|