root / ase / md / langevin.py @ 14
Historique | Voir | Annoter | Télécharger (4,21 ko)
| 1 | 1 | tkerber | """Langevin dynamics class."""
|
|---|---|---|---|
| 2 | 1 | tkerber | |
| 3 | 1 | tkerber | |
| 4 | 1 | tkerber | import sys |
| 5 | 1 | tkerber | import numpy as np |
| 6 | 1 | tkerber | from numpy.random import standard_normal |
| 7 | 1 | tkerber | from ase.md.md import MolecularDynamics |
| 8 | 1 | tkerber | |
| 9 | 1 | tkerber | # For parallel GPAW simulations, the random forces should be distributed.
|
| 10 | 1 | tkerber | if '_gpaw' in sys.modules: |
| 11 | 1 | tkerber | # http://wiki.fysik.dtu.dk/gpaw
|
| 12 | 1 | tkerber | from gpaw.mpi import world as gpaw_world |
| 13 | 1 | tkerber | else:
|
| 14 | 1 | tkerber | gpaw_world = None
|
| 15 | 1 | tkerber | |
| 16 | 1 | tkerber | class Langevin(MolecularDynamics): |
| 17 | 1 | tkerber | """Langevin (constant N, V, T) molecular dynamics.
|
| 18 | 1 | tkerber |
|
| 19 | 1 | tkerber | Usage: Langevin(atoms, dt, temperature, friction)
|
| 20 | 1 | tkerber |
|
| 21 | 1 | tkerber | atoms
|
| 22 | 1 | tkerber | The list of atoms.
|
| 23 | 1 | tkerber |
|
| 24 | 1 | tkerber | dt
|
| 25 | 1 | tkerber | The time step.
|
| 26 | 1 | tkerber |
|
| 27 | 1 | tkerber | temperature
|
| 28 | 1 | tkerber | The desired temperature, in energy units.
|
| 29 | 1 | tkerber |
|
| 30 | 1 | tkerber | friction
|
| 31 | 1 | tkerber | A friction coefficient, typically 1e-4 to 1e-2.
|
| 32 | 1 | tkerber |
|
| 33 | 1 | tkerber | fixcm
|
| 34 | 1 | tkerber | If True, the position and momentum of the center of mass is
|
| 35 | 1 | tkerber | kept unperturbed. Default: True.
|
| 36 | 1 | tkerber |
|
| 37 | 1 | tkerber | The temperature and friction are normally scalars, but in principle one
|
| 38 | 1 | tkerber | quantity per atom could be specified by giving an array.
|
| 39 | 1 | tkerber |
|
| 40 | 1 | tkerber | This dynamics accesses the atoms using Cartesian coordinates."""
|
| 41 | 1 | tkerber | |
| 42 | 1 | tkerber | def __init__(self, atoms, timestep, temperature, friction, fixcm=True, |
| 43 | 1 | tkerber | trajectory=None, logfile=None, loginterval=1, |
| 44 | 1 | tkerber | communicator=gpaw_world): |
| 45 | 1 | tkerber | MolecularDynamics.__init__(self, atoms, timestep, trajectory,
|
| 46 | 1 | tkerber | logfile, loginterval) |
| 47 | 1 | tkerber | self.temp = temperature
|
| 48 | 1 | tkerber | self.frict = friction
|
| 49 | 1 | tkerber | self.fixcm = fixcm # will the center of mass be held fixed? |
| 50 | 1 | tkerber | self.communicator = communicator
|
| 51 | 1 | tkerber | self.updatevars()
|
| 52 | 1 | tkerber | |
| 53 | 1 | tkerber | def set_temperature(self, temperature): |
| 54 | 1 | tkerber | self.temp = temperature
|
| 55 | 1 | tkerber | self.updatevars()
|
| 56 | 1 | tkerber | |
| 57 | 1 | tkerber | def set_friction(self, friction): |
| 58 | 1 | tkerber | self.frict = friction
|
| 59 | 1 | tkerber | self.updatevars()
|
| 60 | 1 | tkerber | |
| 61 | 1 | tkerber | def set_timestep(self, timestep): |
| 62 | 1 | tkerber | self.dt = timestep
|
| 63 | 1 | tkerber | self.updatevars()
|
| 64 | 1 | tkerber | |
| 65 | 1 | tkerber | def updatevars(self): |
| 66 | 1 | tkerber | dt = self.dt
|
| 67 | 1 | tkerber | # If the friction is an array some other constants must be arrays too.
|
| 68 | 1 | tkerber | self._localfrict = hasattr(self.frict, 'shape') |
| 69 | 1 | tkerber | lt = self.frict * dt
|
| 70 | 1 | tkerber | masses = self.masses
|
| 71 | 1 | tkerber | sdpos = dt * np.sqrt(self.temp / masses * (2.0/3.0 - 0.5 * lt) * lt) |
| 72 | 1 | tkerber | sdpos.shape = (-1, 1) |
| 73 | 1 | tkerber | sdmom = np.sqrt(self.temp * masses * 2.0 * (1.0 - lt) * lt) |
| 74 | 1 | tkerber | sdmom.shape = (-1, 1) |
| 75 | 1 | tkerber | pmcor = np.sqrt(3.0)/2.0 * (1.0 - 0.125 * lt) |
| 76 | 1 | tkerber | cnst = np.sqrt((1.0 - pmcor) * (1.0 + pmcor)) |
| 77 | 1 | tkerber | |
| 78 | 1 | tkerber | act0 = 1.0 - lt + 0.5 * lt * lt |
| 79 | 1 | tkerber | act1 = (1.0 - 0.5 * lt + (1.0/6.0) * lt * lt) |
| 80 | 1 | tkerber | act2 = 0.5 - (1.0/6.0) * lt + (1.0/24.0) * lt * lt |
| 81 | 1 | tkerber | c1 = act1 * dt / masses |
| 82 | 1 | tkerber | c1.shape = (-1, 1) |
| 83 | 1 | tkerber | c2 = act2 * dt * dt / masses |
| 84 | 1 | tkerber | c2.shape = (-1, 1) |
| 85 | 1 | tkerber | c3 = (act1 - act2) * dt |
| 86 | 1 | tkerber | c4 = act2 * dt |
| 87 | 1 | tkerber | del act1, act2
|
| 88 | 1 | tkerber | if self._localfrict: |
| 89 | 1 | tkerber | # If the friction is an array, so are these
|
| 90 | 1 | tkerber | act0.shape = (-1, 1) |
| 91 | 1 | tkerber | c3.shape = (-1, 1) |
| 92 | 1 | tkerber | c4.shape = (-1, 1) |
| 93 | 1 | tkerber | pmcor.shape = (-1, 1) |
| 94 | 1 | tkerber | cnst.shape = (-1, 1) |
| 95 | 1 | tkerber | self.sdpos = sdpos
|
| 96 | 1 | tkerber | self.sdmom = sdmom
|
| 97 | 1 | tkerber | self.c1 = c1
|
| 98 | 1 | tkerber | self.c2 = c2
|
| 99 | 1 | tkerber | self.act0 = act0
|
| 100 | 1 | tkerber | self.c3 = c3
|
| 101 | 1 | tkerber | self.c4 = c4
|
| 102 | 1 | tkerber | self.pmcor = pmcor
|
| 103 | 1 | tkerber | self.cnst = cnst
|
| 104 | 1 | tkerber | |
| 105 | 1 | tkerber | def step(self, f): |
| 106 | 1 | tkerber | atoms = self.atoms
|
| 107 | 1 | tkerber | p = self.atoms.get_momenta()
|
| 108 | 1 | tkerber | |
| 109 | 1 | tkerber | random1 = standard_normal(size=(len(atoms), 3)) |
| 110 | 1 | tkerber | random2 = standard_normal(size=(len(atoms), 3)) |
| 111 | 1 | tkerber | |
| 112 | 1 | tkerber | if self.communicator is not None: |
| 113 | 1 | tkerber | self.communicator.broadcast(random1, 0) |
| 114 | 1 | tkerber | self.communicator.broadcast(random2, 0) |
| 115 | 1 | tkerber | |
| 116 | 1 | tkerber | rrnd = self.sdpos * random1
|
| 117 | 1 | tkerber | prnd = (self.sdmom * self.pmcor * random1 + |
| 118 | 1 | tkerber | self.sdmom * self.cnst * random2) |
| 119 | 1 | tkerber | |
| 120 | 1 | tkerber | if self.fixcm: |
| 121 | 1 | tkerber | rrnd = rrnd - np.sum(rrnd, 0) / len(atoms) |
| 122 | 1 | tkerber | prnd = prnd - np.sum(prnd, 0) / len(atoms) |
| 123 | 1 | tkerber | n = len(atoms)
|
| 124 | 1 | tkerber | rrnd *= np.sqrt(n / (n - 1.0))
|
| 125 | 1 | tkerber | prnd *= np.sqrt(n / (n - 1.0))
|
| 126 | 1 | tkerber | |
| 127 | 1 | tkerber | atoms.set_positions(atoms.get_positions() + |
| 128 | 1 | tkerber | self.c1 * p +
|
| 129 | 1 | tkerber | self.c2 * f + rrnd)
|
| 130 | 1 | tkerber | p *= self.act0
|
| 131 | 1 | tkerber | p += self.c3 * f + prnd
|
| 132 | 1 | tkerber | atoms.set_momenta(p) |
| 133 | 1 | tkerber | |
| 134 | 1 | tkerber | f = atoms.get_forces() |
| 135 | 1 | tkerber | atoms.set_momenta(p + self.c4 * f)
|
| 136 | 1 | tkerber | return f |