root / ase / lattice / triclinic.py @ 14
Historique | Voir | Annoter | Télécharger (3,15 ko)
| 1 | 1 | tkerber | """Function-like object creating triclinic lattices.
|
|---|---|---|---|
| 2 | 1 | tkerber |
|
| 3 | 1 | tkerber | The following lattice creator is defined:
|
| 4 | 1 | tkerber | Triclinic
|
| 5 | 1 | tkerber | """
|
| 6 | 1 | tkerber | |
| 7 | 1 | tkerber | from ase.lattice.bravais import Bravais |
| 8 | 1 | tkerber | import numpy as np |
| 9 | 1 | tkerber | from ase.data import reference_states as _refstate |
| 10 | 1 | tkerber | |
| 11 | 1 | tkerber | class TriclinicFactory(Bravais): |
| 12 | 1 | tkerber | "A factory for creating triclinic lattices."
|
| 13 | 1 | tkerber | |
| 14 | 1 | tkerber | # The name of the crystal structure in ChemicalElements
|
| 15 | 1 | tkerber | xtal_name = "triclinic"
|
| 16 | 1 | tkerber | |
| 17 | 1 | tkerber | # The natural basis vectors of the crystal structure
|
| 18 | 1 | tkerber | int_basis = np.array([[1, 0, 0], |
| 19 | 1 | tkerber | [0, 1, 0], |
| 20 | 1 | tkerber | [0, 0, 1]]) |
| 21 | 1 | tkerber | basis_factor = 1.0
|
| 22 | 1 | tkerber | |
| 23 | 1 | tkerber | # Converts the natural basis back to the crystallographic basis
|
| 24 | 1 | tkerber | inverse_basis = np.array([[1, 0, 0], |
| 25 | 1 | tkerber | [0, 1, 0], |
| 26 | 1 | tkerber | [0, 0, 1]]) |
| 27 | 1 | tkerber | inverse_basis_factor = 1.0
|
| 28 | 1 | tkerber | |
| 29 | 1 | tkerber | def get_lattice_constant(self): |
| 30 | 1 | tkerber | "Get the lattice constant of an element with triclinic crystal structure."
|
| 31 | 1 | tkerber | if _refstate[self.atomicnumber]['symmetry'].lower() != self.xtal_name: |
| 32 | 1 | tkerber | raise ValueError, (("Cannot guess the %s lattice constant of" |
| 33 | 1 | tkerber | + " an element with crystal structure %s.")
|
| 34 | 1 | tkerber | % (self.xtal_name,
|
| 35 | 1 | tkerber | _refstate[self.atomicnumber]['symmetry'])) |
| 36 | 1 | tkerber | return _refstate[self.atomicnumber].copy() |
| 37 | 1 | tkerber | |
| 38 | 1 | tkerber | |
| 39 | 1 | tkerber | def make_crystal_basis(self): |
| 40 | 1 | tkerber | "Make the basis matrix for the crystal unit cell and the system unit cell."
|
| 41 | 1 | tkerber | lattice = self.latticeconstant
|
| 42 | 1 | tkerber | if type(lattice) == type({}): |
| 43 | 1 | tkerber | a = lattice['a']
|
| 44 | 1 | tkerber | try:
|
| 45 | 1 | tkerber | b = lattice['b']
|
| 46 | 1 | tkerber | except KeyError: |
| 47 | 1 | tkerber | b = a * lattice['b/a']
|
| 48 | 1 | tkerber | try:
|
| 49 | 1 | tkerber | c = lattice['c']
|
| 50 | 1 | tkerber | except KeyError: |
| 51 | 1 | tkerber | c = a * lattice['c/a']
|
| 52 | 1 | tkerber | alpha = lattice['alpha']
|
| 53 | 1 | tkerber | beta = lattice['beta']
|
| 54 | 1 | tkerber | gamma = lattice['gamma']
|
| 55 | 1 | tkerber | else:
|
| 56 | 1 | tkerber | if len(lattice) == 6: |
| 57 | 1 | tkerber | (a,b,c,alpha,beta,gamma) = lattice |
| 58 | 1 | tkerber | else:
|
| 59 | 1 | tkerber | raise ValueError, "Improper lattice constants for triclinic crystal." |
| 60 | 1 | tkerber | |
| 61 | 1 | tkerber | degree = np.pi / 180.0
|
| 62 | 1 | tkerber | cosa = np.cos(alpha*degree) |
| 63 | 1 | tkerber | cosb = np.cos(beta*degree) |
| 64 | 1 | tkerber | sinb = np.sin(beta*degree) |
| 65 | 1 | tkerber | cosg = np.cos(gamma*degree) |
| 66 | 1 | tkerber | sing = np.sin(gamma*degree) |
| 67 | 1 | tkerber | lattice = np.array([[a,0,0], |
| 68 | 1 | tkerber | [b*cosg, b*sing,0],
|
| 69 | 1 | tkerber | [c*cosb, c*(cosa-cosb*cosg)/sing, |
| 70 | 1 | tkerber | c*np.sqrt(sinb**2 - ((cosa-cosb*cosg)/sing)**2)]]) |
| 71 | 1 | tkerber | self.latticeconstant = lattice
|
| 72 | 1 | tkerber | self.miller_basis = lattice
|
| 73 | 1 | tkerber | self.crystal_basis = (self.basis_factor * |
| 74 | 1 | tkerber | np.dot(self.int_basis, lattice))
|
| 75 | 1 | tkerber | self.basis = np.dot(self.directions, self.crystal_basis) |
| 76 | 1 | tkerber | assert abs(np.dot(lattice[0],lattice[1]) - a*b*cosg) < 1e-5 |
| 77 | 1 | tkerber | assert abs(np.dot(lattice[0],lattice[2]) - a*c*cosb) < 1e-5 |
| 78 | 1 | tkerber | assert abs(np.dot(lattice[1],lattice[2]) - b*c*cosa) < 1e-5 |
| 79 | 1 | tkerber | assert abs(np.dot(lattice[0],lattice[0]) - a*a) < 1e-5 |
| 80 | 1 | tkerber | assert abs(np.dot(lattice[1],lattice[1]) - b*b) < 1e-5 |
| 81 | 1 | tkerber | assert abs(np.dot(lattice[2],lattice[2]) - c*c) < 1e-5 |
| 82 | 1 | tkerber | |
| 83 | 1 | tkerber | Triclinic = TriclinicFactory() |