root / ase / calculators / qmx.py @ 13
Historique | Voir | Annoter | Télécharger (5,99 ko)
1 |
"""
|
---|---|
2 |
This module is the EMBED module for ASE
|
3 |
implemented by T. Kerber
|
4 |
|
5 |
Torsten Kerber, ENS LYON: 2011, 07, 11
|
6 |
|
7 |
This work is supported by Award No. UK-C0017, made by King Abdullah
|
8 |
University of Science and Technology (KAUST)
|
9 |
"""
|
10 |
import ase |
11 |
import ase.atoms |
12 |
import numpy as np |
13 |
from general import Calculator |
14 |
from ase.embed import Embed |
15 |
from ase.units import Hartree |
16 |
|
17 |
from copy import deepcopy |
18 |
|
19 |
import sys, os |
20 |
|
21 |
class Qmx(Calculator): |
22 |
def __init__(self, calculator_high_cluster, calculator_low_cluster, calculator_low_system=None, print_forces=False): |
23 |
self._constraints=None |
24 |
|
25 |
self.calculator_low_cluster = calculator_low_cluster
|
26 |
self.calculator_low_system = calculator_low_system
|
27 |
if self.calculator_low_system is None: |
28 |
self.calculator_low_system = deepcopy(calculator_low_cluster)
|
29 |
self.calculator_high_cluster = calculator_high_cluster
|
30 |
self.print_forces = print_forces
|
31 |
|
32 |
def get_energy_subsystem(self, path, calculator, atoms, force_consistent): |
33 |
# go to directory and calculate energies
|
34 |
print "running energy in: ", path |
35 |
os.chdir(path) |
36 |
atoms.set_calculator(calculator) |
37 |
energy = atoms.get_potential_energy() |
38 |
os.chdir("..")
|
39 |
return energy
|
40 |
|
41 |
def get_forces_subsystem(self, path, calculator, atoms): |
42 |
# go to directory and calculate forces
|
43 |
print "running forces in: ", path |
44 |
os.chdir(path) |
45 |
atoms.set_calculator(calculator) |
46 |
forces = atoms.get_forces() |
47 |
os.chdir("..")
|
48 |
return forces
|
49 |
|
50 |
def get_potential_energy(self, embed, force_consistent=False): |
51 |
# perform energy calculations
|
52 |
e_sys_lo = self.get_energy_subsystem("system.low-level", self.calculator_low_system, embed.get_system(), force_consistent) |
53 |
e_cl_lo = self.get_energy_subsystem("cluster.low-level", self.calculator_low_cluster, embed.get_cluster(), force_consistent) |
54 |
e_cl_hi = self.get_energy_subsystem("cluster.high-level", self.calculator_high_cluster, embed.get_cluster(), force_consistent) |
55 |
# calculate energies
|
56 |
energy = e_sys_lo - e_cl_lo + e_cl_hi |
57 |
# print energies
|
58 |
print "%20s = %15s - %15s + %15s" %("E(C:S)", "E(S-MM)", "E(C-MM)", "E(C-QM)") |
59 |
print "%20f = %15f - %15f + %15f" %(energy, e_sys_lo, e_cl_lo, e_cl_hi) |
60 |
# set energies and return
|
61 |
if force_consistent:
|
62 |
self.energy_free = energy
|
63 |
return self.energy_free |
64 |
else:
|
65 |
self.energy_zero = energy
|
66 |
return self.energy_zero |
67 |
|
68 |
def get_forces(self, embed): |
69 |
atom_map_sys_cl = embed.atom_map_sys_cl |
70 |
# get forces for the three systems
|
71 |
f_sys_lo = self.get_forces_subsystem("system.low-level", self.calculator_low_system, embed.get_system()) |
72 |
f_cl_lo = self.get_forces_subsystem("cluster.low-level", self.calculator_low_cluster, embed.get_cluster()) |
73 |
f_cl_hi = self.get_forces_subsystem("cluster.high-level", self.calculator_high_cluster, embed.get_cluster()) |
74 |
|
75 |
# forces correction for the atoms
|
76 |
f_cl = f_cl_hi - f_cl_lo |
77 |
|
78 |
if self.print_forces: |
79 |
cluster=embed.get_cluster() |
80 |
print "Forces: System LOW - Cluster LOW + Cluster HIGH" |
81 |
for iat_sys in xrange(len(embed)): |
82 |
print "%-2s (" % embed[iat_sys].get_symbol(), |
83 |
for idir in xrange(3): |
84 |
print "%10.6f" % f_sys_lo[iat_sys][idir], |
85 |
print ") <system LOW>" |
86 |
|
87 |
iat_cl = atom_map_sys_cl[iat_sys] |
88 |
if iat_cl > -1: |
89 |
print "%s" % "- (", |
90 |
for idir in xrange(3): |
91 |
print "%10.6f" % f_cl_lo[iat_cl][idir], |
92 |
print ") <cluster LOW>" |
93 |
print "%s" % "+ (", |
94 |
for idir in xrange(3): |
95 |
print "%10.6f" % f_cl_hi[iat_cl][idir], |
96 |
print ") <cluster HIGH>" |
97 |
print
|
98 |
print
|
99 |
|
100 |
# lo-sys + (hi-lo)
|
101 |
for iat_sys in xrange(len(embed)): |
102 |
iat_cl = atom_map_sys_cl[iat_sys] |
103 |
if iat_cl > -1: |
104 |
f_sys_lo[iat_sys] += f_cl[iat_cl] |
105 |
# some settings for the output
|
106 |
i_change = np.zeros(len(embed), int) |
107 |
if self.print_forces: |
108 |
f_sys_lo_orig = f_sys_lo.copy() |
109 |
# correct gradients
|
110 |
# Reference: Eichler, Koelmel, Sauer, J. of Comput. Chem., 18(4). 1997, 463-477.
|
111 |
for cell_L, iat_cl_sys, iat_sys, r, iat_link in embed.linkatoms: |
112 |
# calculate the bond distance (r_bond) at the border
|
113 |
xyz = embed[iat_sys].get_position() - embed[iat_cl_sys].get_position() + cell_L |
114 |
# calculate the bond lenght and the factor f
|
115 |
rbond = np.sqrt(np.dot(xyz, xyz)) |
116 |
f = r / rbond |
117 |
#normalize xyz
|
118 |
xyz /= rbond |
119 |
# receive the gradients for the link atom
|
120 |
fL = f_cl[iat_link] |
121 |
# dot product fL, xyz
|
122 |
fs = np.dot(fL, xyz) |
123 |
# apply corrections for each direction
|
124 |
i_change[iat_sys] = 1
|
125 |
i_change[iat_cl_sys] = 1
|
126 |
for idir in xrange(3): |
127 |
# correct the atom in the system
|
128 |
f_sys_lo[iat_sys][idir] = f_sys_lo[iat_sys][idir] + f*fL[idir] - f*fs*xyz[idir] |
129 |
# correct the atom in the cluster
|
130 |
f_sys_lo[iat_cl_sys][idir] = f_sys_lo[iat_cl_sys][idir] + (1-f)*fL[idir] + f*fs*xyz[idir]
|
131 |
|
132 |
if self.print_forces: |
133 |
print " TOTAL FORCE (uncorrected : corrected) for link atoms" |
134 |
for iat_sys in xrange(len(embed)): |
135 |
print "%-2s (" % embed[iat_sys].get_symbol(), |
136 |
for idir in xrange(3): |
137 |
print "%10.6f" % f_sys_lo_orig[iat_sys][idir], |
138 |
print ") : (", |
139 |
for idir in xrange(3): |
140 |
print "%10.6f" % f_sys_lo[iat_sys][idir], |
141 |
print ")", |
142 |
if i_change[iat_sys]:
|
143 |
print " *", |
144 |
print
|
145 |
print
|
146 |
|
147 |
return f_sys_lo
|