root / ase / calculators / jacapo / jacapo.py @ 13
Historique | Voir | Annoter | Télécharger (140,74 ko)
1 | 1 | tkerber | '''
|
---|---|---|---|
2 | 1 | tkerber | python module for ASE2-free and Numeric-free dacapo
|
3 | 1 | tkerber |
|
4 | 1 | tkerber | U{John Kitchin<mailto:jkitchin@andrew.cmu.edu>} December 25, 2008
|
5 | 1 | tkerber |
|
6 | 1 | tkerber | This module supports numpy directly.
|
7 | 1 | tkerber |
|
8 | 1 | tkerber | * ScientificPython2.8 is required
|
9 | 1 | tkerber |
|
10 | 1 | tkerber | - this is the first version to use numpy by default.
|
11 | 1 | tkerber |
|
12 | 1 | tkerber | see https://wiki.fysik.dtu.dk/stuff/nc/ for dacapo netcdf variable
|
13 | 1 | tkerber | documentation
|
14 | 1 | tkerber | '''
|
15 | 1 | tkerber | |
16 | 1 | tkerber | __docformat__ = 'restructuredtext'
|
17 | 1 | tkerber | |
18 | 1 | tkerber | import exceptions, glob, os, pickle, string |
19 | 1 | tkerber | from Scientific.IO.NetCDF import NetCDFFile as netCDF |
20 | 1 | tkerber | import numpy as np |
21 | 1 | tkerber | import subprocess as sp |
22 | 1 | tkerber | |
23 | 1 | tkerber | import validate |
24 | 1 | tkerber | import changed |
25 | 1 | tkerber | |
26 | 1 | tkerber | import logging |
27 | 1 | tkerber | log = logging.getLogger('Jacapo')
|
28 | 1 | tkerber | |
29 | 1 | tkerber | handler = logging.StreamHandler() |
30 | 1 | tkerber | formatter = logging.Formatter('''\
|
31 | 1 | tkerber | %(levelname)-10s function: %(funcName)s lineno: %(lineno)-4d \
|
32 | 1 | tkerber | %(message)s''')
|
33 | 1 | tkerber | handler.setFormatter(formatter) |
34 | 1 | tkerber | log.addHandler(handler) |
35 | 1 | tkerber | |
36 | 1 | tkerber | |
37 | 1 | tkerber | class DacapoRunning(exceptions.Exception): |
38 | 1 | tkerber | """Raised when ncfile.status = 'running'"""
|
39 | 1 | tkerber | pass
|
40 | 1 | tkerber | |
41 | 1 | tkerber | class DacapoAborted(exceptions.Exception): |
42 | 1 | tkerber | """Raised when ncfile.status = 'aborted'"""
|
43 | 1 | tkerber | pass
|
44 | 1 | tkerber | |
45 | 1 | tkerber | class DacapoInput(exceptions.Exception): |
46 | 1 | tkerber | ''' raised for bad input variables'''
|
47 | 1 | tkerber | pass
|
48 | 1 | tkerber | |
49 | 1 | tkerber | class DacapoAbnormalTermination(exceptions.Exception): |
50 | 1 | tkerber | """Raised when text file does not end correctly"""
|
51 | 1 | tkerber | pass
|
52 | 1 | tkerber | |
53 | 1 | tkerber | def read(ncfile): |
54 | 1 | tkerber | '''return atoms and calculator from ncfile
|
55 | 1 | tkerber |
|
56 | 1 | tkerber | >>> atoms, calc = read('co.nc')
|
57 | 1 | tkerber | '''
|
58 | 1 | tkerber | calc = Jacapo(ncfile) |
59 | 1 | tkerber | atoms = calc.get_atoms() #this returns a copy
|
60 | 1 | tkerber | return (atoms, calc)
|
61 | 1 | tkerber | |
62 | 1 | tkerber | class Jacapo: |
63 | 1 | tkerber | '''
|
64 | 1 | tkerber | Python interface to the Fortran DACAPO code
|
65 | 1 | tkerber | '''
|
66 | 1 | tkerber | |
67 | 1 | tkerber | __name__ = 'Jacapo'
|
68 | 1 | tkerber | __version__ = 0.4
|
69 | 1 | tkerber | |
70 | 1 | tkerber | #dictionary of valid input variables and default settings
|
71 | 1 | tkerber | default_input = {'atoms':None, |
72 | 1 | tkerber | 'pw':350, |
73 | 1 | tkerber | 'dw':350, |
74 | 1 | tkerber | 'xc':'PW91', |
75 | 1 | tkerber | 'nbands':None, |
76 | 1 | tkerber | 'ft':0.1, |
77 | 1 | tkerber | 'kpts':(1,1,1), |
78 | 1 | tkerber | 'spinpol':False, |
79 | 1 | tkerber | 'fixmagmom':None, |
80 | 1 | tkerber | 'symmetry':False, |
81 | 1 | tkerber | 'calculate_stress':False, |
82 | 1 | tkerber | 'dipole':{'status':False, |
83 | 1 | tkerber | 'mixpar':0.2, |
84 | 1 | tkerber | 'initval':0.0, |
85 | 1 | tkerber | 'adddipfield':0.0, |
86 | 1 | tkerber | 'position':None}, |
87 | 1 | tkerber | 'status':'new', |
88 | 1 | tkerber | 'pseudopotentials':None, |
89 | 1 | tkerber | 'extracharge':None, |
90 | 1 | tkerber | 'extpot':None, |
91 | 1 | tkerber | 'fftgrid':None, |
92 | 1 | tkerber | 'ascii_debug':'Off', |
93 | 1 | tkerber | 'ncoutput':{'wf':'Yes', |
94 | 1 | tkerber | 'cd':'Yes', |
95 | 1 | tkerber | 'efp':'Yes', |
96 | 1 | tkerber | 'esp':'Yes'}, |
97 | 1 | tkerber | 'ados':None, |
98 | 1 | tkerber | 'decoupling':None, |
99 | 1 | tkerber | 'external_dipole':None, |
100 | 1 | tkerber | 'convergence':{'energy':0.00001, |
101 | 1 | tkerber | 'density':0.0001, |
102 | 1 | tkerber | 'occupation':0.001, |
103 | 1 | tkerber | 'maxsteps':None, |
104 | 1 | tkerber | 'maxtime':None}, |
105 | 1 | tkerber | 'charge_mixing':{'method':'Pulay', |
106 | 1 | tkerber | 'mixinghistory':10, |
107 | 1 | tkerber | 'mixingcoeff':0.1, |
108 | 1 | tkerber | 'precondition':'No', |
109 | 1 | tkerber | 'updatecharge':'Yes'}, |
110 | 1 | tkerber | 'electronic_minimization':{'method':'eigsolve', |
111 | 1 | tkerber | 'diagsperband':2}, |
112 | 1 | tkerber | 'occupationstatistics':'FermiDirac', |
113 | 1 | tkerber | 'fftgrid':{'soft':None, |
114 | 1 | tkerber | 'hard':None}, |
115 | 1 | tkerber | 'mdos':None, |
116 | 1 | tkerber | 'psp':None |
117 | 1 | tkerber | } |
118 | 1 | tkerber | |
119 | 1 | tkerber | def __init__(self, |
120 | 1 | tkerber | nc='out.nc',
|
121 | 1 | tkerber | outnc=None,
|
122 | 1 | tkerber | debug=logging.WARN, |
123 | 1 | tkerber | stay_alive=False,
|
124 | 1 | tkerber | **kwargs): |
125 | 1 | tkerber | '''
|
126 | 1 | tkerber | Initialize the Jacapo calculator
|
127 | 1 | tkerber |
|
128 | 1 | tkerber | :Parameters:
|
129 | 1 | tkerber |
|
130 | 1 | tkerber | nc : string
|
131 | 1 | tkerber | output netcdf file, or input file if nc already exists
|
132 | 1 | tkerber |
|
133 | 1 | tkerber | outnc : string
|
134 | 1 | tkerber | output file. by default equal to nc
|
135 | 1 | tkerber |
|
136 | 1 | tkerber | debug : integer
|
137 | 1 | tkerber | logging debug level.
|
138 | 1 | tkerber |
|
139 | 1 | tkerber | Valid kwargs:
|
140 | 1 | tkerber |
|
141 | 1 | tkerber | atoms : ASE.Atoms instance
|
142 | 1 | tkerber | atoms is an ase.Atoms object that will be attached
|
143 | 1 | tkerber | to this calculator.
|
144 | 1 | tkerber |
|
145 | 1 | tkerber | pw : integer
|
146 | 1 | tkerber | sets planewave cutoff
|
147 | 1 | tkerber |
|
148 | 1 | tkerber | dw : integer
|
149 | 1 | tkerber | sets density cutoff
|
150 | 1 | tkerber |
|
151 | 1 | tkerber | kpts : iterable
|
152 | 1 | tkerber | set chadi-cohen, monkhorst-pack kpt grid,
|
153 | 1 | tkerber | e.g. kpts = (2,2,1) or explicit list of kpts
|
154 | 1 | tkerber |
|
155 | 1 | tkerber | spinpol : Boolean
|
156 | 1 | tkerber | sets whether spin-polarization is used or not.
|
157 | 1 | tkerber |
|
158 | 1 | tkerber | fixmagmom : float
|
159 | 1 | tkerber | set the magnetic moment of the unit cell. only used
|
160 | 1 | tkerber | in spin polarize calculations
|
161 | 1 | tkerber |
|
162 | 1 | tkerber | ft : float
|
163 | 1 | tkerber | set the Fermi temperature used in occupation smearing
|
164 | 1 | tkerber |
|
165 | 1 | tkerber | xc : string
|
166 | 1 | tkerber | set the exchange-correlation functional.
|
167 | 1 | tkerber | one of ['PZ','VWN','PW91','PBE','RPBE','revPBE'],
|
168 | 1 | tkerber |
|
169 | 1 | tkerber | dipole
|
170 | 1 | tkerber | boolean
|
171 | 1 | tkerber | turn the dipole correction on (True) or off (False)
|
172 | 1 | tkerber |
|
173 | 1 | tkerber | or:
|
174 | 1 | tkerber | dictionary of parameters to fine-tune behavior
|
175 | 1 | tkerber | {'status':False,
|
176 | 1 | tkerber | 'mixpar':0.2,
|
177 | 1 | tkerber | 'initval':0.0,
|
178 | 1 | tkerber | 'adddipfield':0.0,
|
179 | 1 | tkerber | 'position':None}
|
180 | 1 | tkerber |
|
181 | 1 | tkerber | nbands : integer
|
182 | 1 | tkerber | set the number of bands
|
183 | 1 | tkerber |
|
184 | 1 | tkerber | symmetry : Boolean
|
185 | 1 | tkerber | Turn symmetry reduction on (True) or off (False)
|
186 | 1 | tkerber |
|
187 | 1 | tkerber | stress : Boolean
|
188 | 1 | tkerber | Turn stress calculation on (True) or off (False)
|
189 | 1 | tkerber |
|
190 | 1 | tkerber | debug : level for logging
|
191 | 1 | tkerber | could be something like
|
192 | 1 | tkerber | logging.DEBUG or an integer 0-50. The higher the integer,
|
193 | 1 | tkerber | the less information you see set debug level (0 = off, 10 =
|
194 | 1 | tkerber | extreme)
|
195 | 1 | tkerber |
|
196 | 1 | tkerber | Modification of the nc file only occurs at calculate time if needed
|
197 | 1 | tkerber |
|
198 | 1 | tkerber | >>> calc = Jacapo('CO.nc')
|
199 | 1 | tkerber |
|
200 | 1 | tkerber | reads the calculator from CO.nc if it exists or
|
201 | 1 | tkerber | minimally initializes CO.nc with dimensions if it does not exist.
|
202 | 1 | tkerber |
|
203 | 1 | tkerber | >>> calc = Jacapo('CO.nc', pw=300)
|
204 | 1 | tkerber |
|
205 | 1 | tkerber | reads the calculator from CO.nc or initializes it if
|
206 | 1 | tkerber | it does not exist and changes the planewave cutoff energy to
|
207 | 1 | tkerber | 300eV
|
208 | 1 | tkerber |
|
209 | 1 | tkerber | >>> atoms = Jacapo.read_atoms('CO.nc')
|
210 | 1 | tkerber |
|
211 | 1 | tkerber | returns the atoms in the netcdffile CO.nc, with the calculator
|
212 | 1 | tkerber | attached to it.
|
213 | 1 | tkerber |
|
214 | 1 | tkerber | >>> atoms, calc = read('CO.nc')
|
215 | 1 | tkerber |
|
216 | 1 | tkerber | '''
|
217 | 1 | tkerber | self.debug = debug
|
218 | 1 | tkerber | log.setLevel(debug) |
219 | 1 | tkerber | |
220 | 1 | tkerber | self.pars = Jacapo.default_input.copy()
|
221 | 1 | tkerber | self.pars_uptodate = {}
|
222 | 1 | tkerber | |
223 | 1 | tkerber | log.debug(self.pars)
|
224 | 1 | tkerber | |
225 | 1 | tkerber | for key in self.pars: |
226 | 1 | tkerber | self.pars_uptodate[key] = False |
227 | 1 | tkerber | |
228 | 1 | tkerber | self.kwargs = kwargs
|
229 | 1 | tkerber | self.set_psp_database()
|
230 | 1 | tkerber | |
231 | 1 | tkerber | self.set_nc(nc)
|
232 | 1 | tkerber | #assume not ready at init, rely on code later to change this
|
233 | 1 | tkerber | self.ready = False |
234 | 1 | tkerber | |
235 | 1 | tkerber | # need to set a default value for stay_alive
|
236 | 1 | tkerber | self.stay_alive = stay_alive
|
237 | 1 | tkerber | |
238 | 1 | tkerber | # Jacapo('out.nc') should return a calculator with atoms in
|
239 | 1 | tkerber | # out.nc attached or initialize out.nc
|
240 | 1 | tkerber | if os.path.exists(nc):
|
241 | 1 | tkerber | |
242 | 1 | tkerber | # for correct updating, we need to set the correct frame number
|
243 | 1 | tkerber | # before setting atoms or calculator
|
244 | 1 | tkerber | |
245 | 1 | tkerber | self._set_frame_number()
|
246 | 1 | tkerber | |
247 | 1 | tkerber | self.atoms = self.read_only_atoms(nc) |
248 | 1 | tkerber | |
249 | 1 | tkerber | #if atoms object is passed to
|
250 | 1 | tkerber | #__init__ we assume the user wants the atoms object
|
251 | 1 | tkerber | # updated to the current state in the file.
|
252 | 1 | tkerber | if 'atoms' in kwargs: |
253 | 1 | tkerber | log.debug('Updating the atoms in kwargs')
|
254 | 1 | tkerber | |
255 | 1 | tkerber | atoms = kwargs['atoms']
|
256 | 1 | tkerber | atoms.set_cell(self.atoms.get_cell())
|
257 | 1 | tkerber | atoms.set_positions(self.atoms.get_positions())
|
258 | 1 | tkerber | atoms.calc = self
|
259 | 1 | tkerber | |
260 | 1 | tkerber | #update the parameter list from the ncfile
|
261 | 1 | tkerber | self.update_input_parameters()
|
262 | 1 | tkerber | |
263 | 1 | tkerber | self.ready = True |
264 | 1 | tkerber | |
265 | 1 | tkerber | #change output file if needed
|
266 | 1 | tkerber | if outnc:
|
267 | 1 | tkerber | self.set_nc(outnc)
|
268 | 1 | tkerber | |
269 | 1 | tkerber | if len(kwargs) > 0: |
270 | 1 | tkerber | |
271 | 1 | tkerber | if 'stress' in kwargs: |
272 | 1 | tkerber | raise DacapoInput, '''\ |
273 | 1 | tkerber | stress keyword is deprecated.
|
274 | 1 | tkerber | you must use calculate_stress instead'''
|
275 | 1 | tkerber | |
276 | 1 | tkerber | #make sure to set calculator on atoms if it was in kwargs
|
277 | 1 | tkerber | #and do this first, since some parameters need info from atoms
|
278 | 1 | tkerber | if 'atoms' in kwargs: |
279 | 1 | tkerber | #we need to set_atoms here so the atoms are written to
|
280 | 1 | tkerber | #the ncfile
|
281 | 1 | tkerber | self.set_atoms(kwargs['atoms']) |
282 | 1 | tkerber | kwargs['atoms'].calc = self |
283 | 1 | tkerber | del kwargs['atoms'] #so we don't call it in the next |
284 | 1 | tkerber | #line. we don't want to do that
|
285 | 1 | tkerber | #because it will update the _frame
|
286 | 1 | tkerber | #counter, and that should not be
|
287 | 1 | tkerber | #done here.
|
288 | 1 | tkerber | |
289 | 1 | tkerber | self.set(**kwargs) #if nothing changes, nothing will be done |
290 | 1 | tkerber | |
291 | 1 | tkerber | def set(self, **kwargs): |
292 | 1 | tkerber | '''set a parameter
|
293 | 1 | tkerber |
|
294 | 1 | tkerber | parameter is stored in dictionary that is processed later if a
|
295 | 1 | tkerber | calculation is need.
|
296 | 1 | tkerber | '''
|
297 | 1 | tkerber | for key in kwargs: |
298 | 1 | tkerber | if key not in self.default_input: |
299 | 1 | tkerber | raise DacapoInput, '%s is not valid input' % key |
300 | 1 | tkerber | |
301 | 1 | tkerber | if kwargs[key] is None: |
302 | 1 | tkerber | continue
|
303 | 1 | tkerber | |
304 | 1 | tkerber | #now check for valid input
|
305 | 1 | tkerber | validf = 'validate.valid_%s' % key
|
306 | 1 | tkerber | valid = eval('%s(kwargs[key])' % validf) |
307 | 1 | tkerber | if not valid: |
308 | 1 | tkerber | s = 'Warning invalid input detected for key "%s" %s'
|
309 | 1 | tkerber | log.warn(s % (key, |
310 | 1 | tkerber | kwargs[key])) |
311 | 1 | tkerber | raise DacapoInput, s % (key, kwargs[key])
|
312 | 1 | tkerber | |
313 | 1 | tkerber | #now see if key has changed
|
314 | 1 | tkerber | if key in self.pars: |
315 | 1 | tkerber | changef = 'changed.%s_changed' % key
|
316 | 1 | tkerber | if os.path.exists(self.get_nc()): |
317 | 1 | tkerber | notchanged = not eval('%s(self,kwargs[key])' % changef) |
318 | 1 | tkerber | else:
|
319 | 1 | tkerber | notchanged = False
|
320 | 1 | tkerber | log.debug('%s notchanged = %s' % (key, notchanged))
|
321 | 1 | tkerber | |
322 | 1 | tkerber | if notchanged:
|
323 | 1 | tkerber | continue
|
324 | 1 | tkerber | |
325 | 1 | tkerber | log.debug('setting: %s. self.ready = False ' % key)
|
326 | 1 | tkerber | |
327 | 1 | tkerber | self.pars[key] = kwargs[key]
|
328 | 1 | tkerber | self.pars_uptodate[key] = False |
329 | 1 | tkerber | self.ready = False |
330 | 1 | tkerber | log.debug('exiting set function')
|
331 | 1 | tkerber | |
332 | 1 | tkerber | def write_input(self): |
333 | 1 | tkerber | '''write out input parameters as needed
|
334 | 1 | tkerber |
|
335 | 1 | tkerber | you must define a self._set_keyword function that does all the
|
336 | 1 | tkerber | actual writing.
|
337 | 1 | tkerber | '''
|
338 | 1 | tkerber | log.debug('Writing input variables out')
|
339 | 1 | tkerber | log.debug(self.pars)
|
340 | 1 | tkerber | |
341 | 1 | tkerber | if 'DACAPO_READONLY' in os.environ: |
342 | 1 | tkerber | raise Exception, 'DACAPO_READONLY set and you tried to write!' |
343 | 1 | tkerber | |
344 | 1 | tkerber | if self.ready: |
345 | 1 | tkerber | return
|
346 | 1 | tkerber | # Only write out changed parameters. this function does not do
|
347 | 1 | tkerber | # the writing, that is done for each variable in private
|
348 | 1 | tkerber | # functions.
|
349 | 1 | tkerber | for key in self.pars: |
350 | 1 | tkerber | if self.pars_uptodate[key] is False: |
351 | 1 | tkerber | setf = 'set_%s' % key
|
352 | 1 | tkerber | |
353 | 1 | tkerber | if self.pars[key] is None: |
354 | 1 | tkerber | continue
|
355 | 1 | tkerber | |
356 | 1 | tkerber | log.debug('trying to call: %s' % setf)
|
357 | 1 | tkerber | log.debug('self.%s(self.pars[key])' % setf)
|
358 | 1 | tkerber | log.debug('key = %s' % str(self.pars[key])) |
359 | 1 | tkerber | |
360 | 1 | tkerber | if isinstance(self.pars[key], dict): |
361 | 1 | tkerber | eval('self.%s(**self.pars[key])' % setf) |
362 | 1 | tkerber | else:
|
363 | 1 | tkerber | eval('self.%s(self.pars[key])' % setf) |
364 | 1 | tkerber | |
365 | 1 | tkerber | self.pars_uptodate[key] = True #update the changed flag |
366 | 1 | tkerber | |
367 | 1 | tkerber | log.debug('wrote %s: %s' % (key, str(self.pars[key]))) |
368 | 1 | tkerber | |
369 | 1 | tkerber | #set Jacapo version
|
370 | 1 | tkerber | ncf = netCDF(self.get_nc(), 'a') |
371 | 1 | tkerber | ncf.Jacapo_version = Jacapo.__version__ |
372 | 1 | tkerber | ncf.sync() |
373 | 1 | tkerber | ncf.close() |
374 | 1 | tkerber | |
375 | 1 | tkerber | def update_input_parameters(self): |
376 | 1 | tkerber | '''read in all the input parameters from the netcdfile'''
|
377 | 1 | tkerber | |
378 | 1 | tkerber | log.debug('Updating parameters')
|
379 | 1 | tkerber | |
380 | 1 | tkerber | for key in self.default_input: |
381 | 1 | tkerber | getf = 'self.get_%s()' % key
|
382 | 1 | tkerber | log.debug('getting key: %s' % key)
|
383 | 1 | tkerber | self.pars[key] = eval(getf) |
384 | 1 | tkerber | self.pars_uptodate[key] = True |
385 | 1 | tkerber | return self.pars |
386 | 1 | tkerber | |
387 | 1 | tkerber | def initnc(self, ncfile=None): |
388 | 1 | tkerber | '''create an ncfile with minimal dimensions in it
|
389 | 1 | tkerber |
|
390 | 1 | tkerber | this makes sure the dimensions needed for other set functions
|
391 | 1 | tkerber | exist when needed.'''
|
392 | 1 | tkerber | |
393 | 1 | tkerber | if ncfile is None: |
394 | 1 | tkerber | ncfile = self.get_nc()
|
395 | 1 | tkerber | else:
|
396 | 1 | tkerber | self.set_nc(ncfile)
|
397 | 1 | tkerber | |
398 | 1 | tkerber | log.debug('initializing %s' % ncfile)
|
399 | 1 | tkerber | |
400 | 1 | tkerber | base = os.path.split(ncfile)[0]
|
401 | 1 | tkerber | if base is not '' and not os.path.isdir(base): |
402 | 1 | tkerber | os.makedirs(base) |
403 | 1 | tkerber | |
404 | 1 | tkerber | ncf = netCDF(ncfile, 'w')
|
405 | 1 | tkerber | #first, we define some dimensions we always need
|
406 | 1 | tkerber | #unlimited
|
407 | 1 | tkerber | ncf.createDimension('number_ionic_steps', None) |
408 | 1 | tkerber | ncf.createDimension('dim1', 1) |
409 | 1 | tkerber | ncf.createDimension('dim2', 2) |
410 | 1 | tkerber | ncf.createDimension('dim3', 3) |
411 | 1 | tkerber | ncf.createDimension('dim4', 4) |
412 | 1 | tkerber | ncf.createDimension('dim5', 5) |
413 | 1 | tkerber | ncf.createDimension('dim6', 6) |
414 | 1 | tkerber | ncf.createDimension('dim7', 7) |
415 | 1 | tkerber | ncf.createDimension('dim20', 20) #for longer strings |
416 | 1 | tkerber | ncf.status = 'new'
|
417 | 1 | tkerber | ncf.history = 'Dacapo'
|
418 | 1 | tkerber | ncf.jacapo_version = Jacapo.__version__ |
419 | 1 | tkerber | ncf.close() |
420 | 1 | tkerber | |
421 | 1 | tkerber | self.ready = False |
422 | 1 | tkerber | self._frame = 0 |
423 | 1 | tkerber | |
424 | 1 | tkerber | def __del__(self): |
425 | 1 | tkerber | '''If calculator is deleted try to stop dacapo program
|
426 | 1 | tkerber | '''
|
427 | 1 | tkerber | |
428 | 1 | tkerber | if hasattr(self, '_dacapo'): |
429 | 1 | tkerber | if self._dacapo.poll()==None: |
430 | 1 | tkerber | self.execute_external_dynamics(stopprogram=True) |
431 | 1 | tkerber | #and clean up after Dacapo
|
432 | 1 | tkerber | if os.path.exists('stop'): |
433 | 1 | tkerber | os.remove('stop')
|
434 | 1 | tkerber | #remove slave files
|
435 | 1 | tkerber | txt = self.get_txt()
|
436 | 1 | tkerber | if txt is not None: |
437 | 1 | tkerber | slv = txt + '.slave*'
|
438 | 1 | tkerber | for slvf in glob.glob(slv): |
439 | 1 | tkerber | os.remove(slvf) |
440 | 1 | tkerber | |
441 | 1 | tkerber | def __str__(self): |
442 | 1 | tkerber | '''
|
443 | 1 | tkerber | pretty-print the calculator and atoms.
|
444 | 1 | tkerber |
|
445 | 1 | tkerber | we read everything directly from the ncfile to prevent
|
446 | 1 | tkerber | triggering any calculations
|
447 | 1 | tkerber | '''
|
448 | 1 | tkerber | s = [] |
449 | 1 | tkerber | if self.nc is None: |
450 | 1 | tkerber | return 'No netcdf file attached to this calculator' |
451 | 1 | tkerber | if not os.path.exists(self.nc): |
452 | 1 | tkerber | return 'ncfile does not exist yet' |
453 | 1 | tkerber | |
454 | 1 | tkerber | nc = netCDF(self.nc, 'r') |
455 | 1 | tkerber | s.append(' ---------------------------------')
|
456 | 1 | tkerber | s.append(' Dacapo calculation from %s' % self.nc) |
457 | 1 | tkerber | if hasattr(nc, 'status'): |
458 | 1 | tkerber | s.append(' status = %s' % nc.status)
|
459 | 1 | tkerber | if hasattr(nc, 'version'): |
460 | 1 | tkerber | s.append(' version = %s' % nc.version)
|
461 | 1 | tkerber | if hasattr(nc, 'Jacapo_version'): |
462 | 1 | tkerber | s.append(' Jacapo version = %s' % nc.Jacapo_version[0]) |
463 | 1 | tkerber | |
464 | 1 | tkerber | energy = nc.variables.get('TotalEnergy', None) |
465 | 1 | tkerber | |
466 | 1 | tkerber | if energy and energy[:][-1] < 1E36: # missing values get |
467 | 1 | tkerber | # returned at 9.3E36
|
468 | 1 | tkerber | s.append(' Energy = %1.6f eV' % energy[:][-1]) |
469 | 1 | tkerber | else:
|
470 | 1 | tkerber | s.append(' Energy = None')
|
471 | 1 | tkerber | |
472 | 1 | tkerber | s.append('')
|
473 | 1 | tkerber | |
474 | 1 | tkerber | atoms = self.get_atoms()
|
475 | 1 | tkerber | |
476 | 1 | tkerber | if atoms is None: |
477 | 1 | tkerber | s.append(' no atoms defined')
|
478 | 1 | tkerber | else:
|
479 | 1 | tkerber | uc = atoms.get_cell() |
480 | 1 | tkerber | #a, b, c = uc
|
481 | 1 | tkerber | s.append(" Unit Cell vectors (angstroms)")
|
482 | 1 | tkerber | s.append(" x y z length")
|
483 | 1 | tkerber | |
484 | 1 | tkerber | for i, v in enumerate(uc): |
485 | 1 | tkerber | L = (np.sum(v**2))**0.5 #vector length |
486 | 1 | tkerber | s.append(" a%i [% 1.4f % 1.4f % 1.4f] %1.2f" % (i,
|
487 | 1 | tkerber | v[0],
|
488 | 1 | tkerber | v[1],
|
489 | 1 | tkerber | v[2],
|
490 | 1 | tkerber | L)) |
491 | 1 | tkerber | |
492 | 1 | tkerber | stress = nc.variables.get('TotalStress', None) |
493 | 1 | tkerber | if stress is not None: |
494 | 1 | tkerber | stress = np.take(stress[:].ravel(), [0, 4, 8, 5, 2, 1]) |
495 | 1 | tkerber | s.append(' Stress: xx, yy, zz, yz, xz, xy')
|
496 | 1 | tkerber | s1 = ' % 1.3f % 1.3f % 1.3f % 1.3f % 1.3f % 1.3f'
|
497 | 1 | tkerber | s.append(s1 % tuple(stress))
|
498 | 1 | tkerber | else:
|
499 | 1 | tkerber | s.append(' No stress calculated.')
|
500 | 1 | tkerber | s.append(' Volume = %1.2f A^3' % atoms.get_volume())
|
501 | 1 | tkerber | s.append('')
|
502 | 1 | tkerber | |
503 | 1 | tkerber | z = " Atom, sym, position (in x,y,z), tag, rmsForce and psp"
|
504 | 1 | tkerber | s.append(z) |
505 | 1 | tkerber | |
506 | 1 | tkerber | #this is just the ncvariable
|
507 | 1 | tkerber | forces = nc.variables.get('DynamicAtomForces', None) |
508 | 1 | tkerber | |
509 | 1 | tkerber | for i, atom in enumerate(atoms): |
510 | 1 | tkerber | sym = atom.get_symbol() |
511 | 1 | tkerber | pos = atom.get_position() |
512 | 1 | tkerber | tag = atom.get_tag() |
513 | 1 | tkerber | if forces is not None and (forces[:][-1][i] < 1E36).all(): |
514 | 1 | tkerber | f = forces[:][-1][i]
|
515 | 1 | tkerber | # Lars Grabow: this seems to work right for some
|
516 | 1 | tkerber | # reason, but I would expect this to be the right
|
517 | 1 | tkerber | # index order f=forces[-1][i][:]
|
518 | 1 | tkerber | # frame,atom,direction
|
519 | 1 | tkerber | rmsforce = (np.sum(f**2))**0.5 |
520 | 1 | tkerber | else:
|
521 | 1 | tkerber | rmsforce = None
|
522 | 1 | tkerber | |
523 | 1 | tkerber | st = " %2i %3.12s " % (i, sym)
|
524 | 1 | tkerber | st += "[% 7.3f%7.3f% 7.3f] " % tuple(pos) |
525 | 1 | tkerber | st += " %2s " % tag
|
526 | 1 | tkerber | if rmsforce is not None: |
527 | 1 | tkerber | st += " %4.3f " % rmsforce
|
528 | 1 | tkerber | else:
|
529 | 1 | tkerber | st += ' None '
|
530 | 1 | tkerber | st += " %s" % (self.get_psp(sym)) |
531 | 1 | tkerber | s.append(st) |
532 | 1 | tkerber | |
533 | 1 | tkerber | s.append('')
|
534 | 1 | tkerber | s.append(' Details:')
|
535 | 1 | tkerber | xc = self.get_xc()
|
536 | 1 | tkerber | if xc is not None: |
537 | 1 | tkerber | s.append(' XCfunctional = %s' % self.get_xc()) |
538 | 1 | tkerber | else:
|
539 | 1 | tkerber | s.append(' XCfunctional = Not defined')
|
540 | 1 | tkerber | s.append(' Planewavecutoff = %i eV' % int(self.get_pw())) |
541 | 1 | tkerber | dw = self.get_dw()
|
542 | 1 | tkerber | if dw:
|
543 | 1 | tkerber | s.append(' Densitywavecutoff = %i eV' % int(self.get_dw())) |
544 | 1 | tkerber | else:
|
545 | 1 | tkerber | s.append(' Densitywavecutoff = None')
|
546 | 1 | tkerber | ft = self.get_ft()
|
547 | 1 | tkerber | if ft is not None: |
548 | 1 | tkerber | s.append(' FermiTemperature = %f kT' % ft)
|
549 | 1 | tkerber | else:
|
550 | 1 | tkerber | s.append(' FermiTemperature = not defined')
|
551 | 1 | tkerber | nelectrons = self.get_valence()
|
552 | 1 | tkerber | if nelectrons is not None: |
553 | 1 | tkerber | s.append(' Number of electrons = %1.1f' % nelectrons)
|
554 | 1 | tkerber | else:
|
555 | 1 | tkerber | s.append(' Number of electrons = None')
|
556 | 1 | tkerber | s.append(' Number of bands = %s' % self.get_nbands()) |
557 | 1 | tkerber | s.append(' Kpoint grid = %s' % str(self.get_kpts_type())) |
558 | 1 | tkerber | s.append(' Spin-polarized = %s' % self.get_spin_polarized()) |
559 | 1 | tkerber | s.append(' Dipole correction = %s' % self.get_dipole()) |
560 | 1 | tkerber | s.append(' Symmetry = %s' % self.get_symmetry()) |
561 | 1 | tkerber | s.append(' Constraints = %s' % str(atoms._get_constraints())) |
562 | 1 | tkerber | s.append(' ---------------------------------')
|
563 | 1 | tkerber | nc.close() |
564 | 1 | tkerber | return string.join(s, '\n') |
565 | 1 | tkerber | |
566 | 1 | tkerber | #todo figure out other xc psp databases
|
567 | 1 | tkerber | def set_psp_database(self, xc=None): |
568 | 1 | tkerber | '''
|
569 | 1 | tkerber | get the xc-dependent psp database
|
570 | 1 | tkerber |
|
571 | 1 | tkerber | :Parameters:
|
572 | 1 | tkerber |
|
573 | 1 | tkerber | xc : string
|
574 | 1 | tkerber | one of 'PW91', 'PBE', 'revPBE', 'RPBE', 'PZ'
|
575 | 1 | tkerber |
|
576 | 1 | tkerber |
|
577 | 1 | tkerber | not all the databases are complete, and that means
|
578 | 1 | tkerber | some psp do not exist.
|
579 | 1 | tkerber |
|
580 | 1 | tkerber | note: this function is not supported fully. only pw91 is
|
581 | 1 | tkerber | imported now. Changing the xc at this point results in loading
|
582 | 1 | tkerber | a nearly empty database, and I have not thought about how to
|
583 | 1 | tkerber | resolve that
|
584 | 1 | tkerber | '''
|
585 | 1 | tkerber | |
586 | 1 | tkerber | if xc == 'PW91' or xc is None: |
587 | 1 | tkerber | from pw91_psp import defaultpseudopotentials |
588 | 1 | tkerber | else:
|
589 | 1 | tkerber | log.warn('PW91 pseudopotentials are being used!')
|
590 | 1 | tkerber | #todo build other xc psp databases
|
591 | 1 | tkerber | from pw91_psp import defaultpseudopotentials |
592 | 1 | tkerber | |
593 | 1 | tkerber | self.psp = defaultpseudopotentials
|
594 | 1 | tkerber | |
595 | 1 | tkerber | def _set_frame_number(self, frame=None): |
596 | 1 | tkerber | 'set framenumber in the netcdf file'
|
597 | 1 | tkerber | |
598 | 1 | tkerber | if frame is None: |
599 | 1 | tkerber | nc = netCDF(self.nc, 'r') |
600 | 1 | tkerber | if 'TotalEnergy' in nc.variables: |
601 | 1 | tkerber | frame = nc.variables['TotalEnergy'].shape[0] |
602 | 1 | tkerber | # make sure the last energy is reasonable. Sometime
|
603 | 1 | tkerber | # the field is empty if the calculation ran out of
|
604 | 1 | tkerber | # walltime for example. Empty values get returned as
|
605 | 1 | tkerber | # 9.6E36. Dacapos energies should always be negative,
|
606 | 1 | tkerber | # so if the energy is > 1E36, there is definitely
|
607 | 1 | tkerber | # something wrong and a restart is required.
|
608 | 1 | tkerber | if nc.variables.get('TotalEnergy', None)[-1] > 1E36: |
609 | 1 | tkerber | log.warn("Total energy > 1E36. NC file is incomplete. \
|
610 | 1 | tkerber | calc.restart required")
|
611 | 1 | tkerber | self.restart()
|
612 | 1 | tkerber | else:
|
613 | 1 | tkerber | frame = 1
|
614 | 1 | tkerber | nc.close() |
615 | 1 | tkerber | log.info("Current frame number is: %i" % (frame-1)) |
616 | 1 | tkerber | self._frame = frame-1 #netCDF starts counting with 1 |
617 | 1 | tkerber | |
618 | 1 | tkerber | def _increment_frame(self): |
619 | 1 | tkerber | 'increment the framenumber'
|
620 | 1 | tkerber | |
621 | 1 | tkerber | log.debug('incrementing frame')
|
622 | 1 | tkerber | self._frame += 1 |
623 | 1 | tkerber | |
624 | 1 | tkerber | def set_pw(self, pw): |
625 | 1 | tkerber | '''set the planewave cutoff.
|
626 | 1 | tkerber |
|
627 | 1 | tkerber | :Parameters:
|
628 | 1 | tkerber |
|
629 | 1 | tkerber | pw : integer
|
630 | 1 | tkerber | the planewave cutoff in eV
|
631 | 1 | tkerber |
|
632 | 1 | tkerber | this function checks to make sure the density wave cutoff is
|
633 | 1 | tkerber | greater than or equal to the planewave cutoff.'''
|
634 | 1 | tkerber | |
635 | 1 | tkerber | nc = netCDF(self.nc, 'a') |
636 | 1 | tkerber | if 'PlaneWaveCutoff' in nc.variables: |
637 | 1 | tkerber | vpw = nc.variables['PlaneWaveCutoff']
|
638 | 1 | tkerber | vpw.assignValue(pw) |
639 | 1 | tkerber | else:
|
640 | 1 | tkerber | vpw = nc.createVariable('PlaneWaveCutoff', 'd', ('dim1',)) |
641 | 1 | tkerber | vpw.assignValue(pw) |
642 | 1 | tkerber | |
643 | 1 | tkerber | if 'Density_WaveCutoff' in nc.variables: |
644 | 1 | tkerber | vdw = nc.variables['Density_WaveCutoff']
|
645 | 1 | tkerber | dw = vdw.getValue() |
646 | 1 | tkerber | if pw > dw:
|
647 | 1 | tkerber | vdw.assignValue(pw) #make them equal
|
648 | 1 | tkerber | else:
|
649 | 1 | tkerber | vdw = nc.createVariable('Density_WaveCutoff', 'd', ('dim1',)) |
650 | 1 | tkerber | vdw.assignValue(pw) |
651 | 1 | tkerber | nc.close() |
652 | 1 | tkerber | self.restart() #nc dimension change for number_plane_Wave dimension |
653 | 1 | tkerber | self.set_status('new') |
654 | 1 | tkerber | self.ready = False |
655 | 1 | tkerber | |
656 | 1 | tkerber | def set_dw(self, dw): |
657 | 1 | tkerber | '''set the density wave cutoff energy.
|
658 | 1 | tkerber |
|
659 | 1 | tkerber | :Parameters:
|
660 | 1 | tkerber |
|
661 | 1 | tkerber | dw : integer
|
662 | 1 | tkerber | the density wave cutoff
|
663 | 1 | tkerber |
|
664 | 1 | tkerber | The function checks to make sure it is not less than the
|
665 | 1 | tkerber | planewave cutoff.
|
666 | 1 | tkerber |
|
667 | 1 | tkerber | Density_WaveCutoff describes the kinetic energy neccesary to
|
668 | 1 | tkerber | represent a wavefunction associated with the total density,
|
669 | 1 | tkerber | i.e. G-vectors for which $\vert G\vert^2$ $<$
|
670 | 1 | tkerber | 4*Density_WaveCutoff will be used to describe the total
|
671 | 1 | tkerber | density (including augmentation charge and partial core
|
672 | 1 | tkerber | density). If Density_WaveCutoff is equal to PlaneWaveCutoff
|
673 | 1 | tkerber | this implies that the total density is as soft as the
|
674 | 1 | tkerber | wavefunctions described by the kinetic energy cutoff
|
675 | 1 | tkerber | PlaneWaveCutoff. If a value of Density_WaveCutoff is specified
|
676 | 1 | tkerber | (must be larger than or equal to PlaneWaveCutoff) the program
|
677 | 1 | tkerber | will run using two grids, one for representing the
|
678 | 1 | tkerber | wavefunction density (softgrid_dim) and one representing the
|
679 | 1 | tkerber | total density (hardgrid_dim). If the density can be
|
680 | 1 | tkerber | reprensented on the same grid as the wavefunction density
|
681 | 1 | tkerber | Density_WaveCutoff can be chosen equal to PlaneWaveCutoff
|
682 | 1 | tkerber | (default).
|
683 | 1 | tkerber | '''
|
684 | 1 | tkerber | |
685 | 1 | tkerber | pw = self.get_pw()
|
686 | 1 | tkerber | if pw > dw:
|
687 | 1 | tkerber | log.warn('Planewave cutoff %i is greater \
|
688 | 1 | tkerber | than density cutoff %i' % (pw, dw))
|
689 | 1 | tkerber | |
690 | 1 | tkerber | ncf = netCDF(self.nc, 'a') |
691 | 1 | tkerber | if 'Density_WaveCutoff' in ncf.variables: |
692 | 1 | tkerber | vdw = ncf.variables['Density_WaveCutoff']
|
693 | 1 | tkerber | vdw.assignValue(dw) |
694 | 1 | tkerber | else:
|
695 | 1 | tkerber | vdw = ncf.createVariable('Density_WaveCutoff', 'i', ('dim1',)) |
696 | 1 | tkerber | vdw.assignValue(dw) |
697 | 1 | tkerber | ncf.close() |
698 | 1 | tkerber | self.restart() #nc dimension change |
699 | 1 | tkerber | self.set_status('new') |
700 | 1 | tkerber | self.ready = False |
701 | 1 | tkerber | |
702 | 1 | tkerber | def set_xc(self, xc): |
703 | 1 | tkerber | '''Set the self-consistent exchange-correlation functional
|
704 | 1 | tkerber |
|
705 | 1 | tkerber | :Parameters:
|
706 | 1 | tkerber |
|
707 | 1 | tkerber | xc : string
|
708 | 1 | tkerber | Must be one of 'PZ', 'VWN', 'PW91', 'PBE', 'revPBE', 'RPBE'
|
709 | 1 | tkerber |
|
710 | 1 | tkerber | Selects which density functional to use for
|
711 | 1 | tkerber | exchange-correlation when performing electronic minimization
|
712 | 1 | tkerber | (the electronic energy is minimized with respect to this
|
713 | 1 | tkerber | selected functional) Notice that the electronic energy is also
|
714 | 1 | tkerber | evaluated non-selfconsistently by DACAPO for other
|
715 | 1 | tkerber | exchange-correlation functionals Recognized options :
|
716 | 1 | tkerber |
|
717 | 1 | tkerber | * "PZ" (Perdew Zunger LDA-parametrization)
|
718 | 1 | tkerber | * "VWN" (Vosko Wilk Nusair LDA-parametrization)
|
719 | 1 | tkerber | * "PW91" (Perdew Wang 91 GGA-parametrization)
|
720 | 1 | tkerber | * "PBE" (Perdew Burke Ernzerhof GGA-parametrization)
|
721 | 1 | tkerber | * "revPBE" (revised PBE/1 GGA-parametrization)
|
722 | 1 | tkerber | * "RPBE" (revised PBE/2 GGA-parametrization)
|
723 | 1 | tkerber |
|
724 | 1 | tkerber | option "PZ" is not allowed for spin polarized
|
725 | 1 | tkerber | calculation; use "VWN" instead.
|
726 | 1 | tkerber | '''
|
727 | 1 | tkerber | nc = netCDF(self.nc, 'a') |
728 | 1 | tkerber | v = 'ExcFunctional'
|
729 | 1 | tkerber | if v in nc.variables: |
730 | 1 | tkerber | nc.variables[v][:] = np.array('%7s' % xc, 'c') |
731 | 1 | tkerber | else:
|
732 | 1 | tkerber | vxc = nc.createVariable('ExcFunctional', 'c', ('dim7',)) |
733 | 1 | tkerber | vxc[:] = np.array('%7s' % xc, 'c') |
734 | 1 | tkerber | nc.close() |
735 | 1 | tkerber | self.set_status('new') |
736 | 1 | tkerber | self.ready = False |
737 | 1 | tkerber | |
738 | 1 | tkerber | def set_nbands(self, nbands=None): |
739 | 1 | tkerber | '''Set the number of bands. a few unoccupied bands are
|
740 | 1 | tkerber | recommended.
|
741 | 1 | tkerber |
|
742 | 1 | tkerber | :Parameters:
|
743 | 1 | tkerber |
|
744 | 1 | tkerber | nbands : integer
|
745 | 1 | tkerber | the number of bands.
|
746 | 1 | tkerber |
|
747 | 1 | tkerber | if nbands = None the function returns with nothing done. At
|
748 | 1 | tkerber | calculate time, if there are still no bands, they will be set
|
749 | 1 | tkerber | by:
|
750 | 1 | tkerber |
|
751 | 1 | tkerber | the number of bands is calculated as
|
752 | 1 | tkerber | $nbands=nvalence*0.65 + 4$
|
753 | 1 | tkerber | '''
|
754 | 1 | tkerber | if nbands is None: |
755 | 1 | tkerber | return
|
756 | 1 | tkerber | |
757 | 1 | tkerber | self.delete_ncattdimvar(self.nc, |
758 | 1 | tkerber | ncdims=['number_of_bands'],
|
759 | 1 | tkerber | ncvars=[]) |
760 | 1 | tkerber | |
761 | 1 | tkerber | nc = netCDF(self.nc, 'a') |
762 | 1 | tkerber | v = 'ElectronicBands'
|
763 | 1 | tkerber | if v in nc.variables: |
764 | 1 | tkerber | vnb = nc.variables[v] |
765 | 1 | tkerber | else:
|
766 | 1 | tkerber | vnb = nc.createVariable('ElectronicBands', 'c', ('dim1',)) |
767 | 1 | tkerber | |
768 | 1 | tkerber | vnb.NumberOfBands = nbands |
769 | 1 | tkerber | nc.sync() |
770 | 1 | tkerber | nc.close() |
771 | 1 | tkerber | self.set_status('new') |
772 | 1 | tkerber | self.ready = False |
773 | 1 | tkerber | |
774 | 1 | tkerber | def set_kpts(self, kpts): |
775 | 1 | tkerber | '''
|
776 | 1 | tkerber | set the kpt grid.
|
777 | 1 | tkerber |
|
778 | 1 | tkerber | Parameters:
|
779 | 1 | tkerber |
|
780 | 1 | tkerber | kpts: (n1,n2,n3) or [k1,k2,k3,...] or one of these
|
781 | 1 | tkerber | chadi-cohen sets:
|
782 | 1 | tkerber |
|
783 | 1 | tkerber | * cc6_1x1
|
784 | 1 | tkerber | * cc12_2x3
|
785 | 1 | tkerber | * cc18_sq3xsq3
|
786 | 1 | tkerber | * cc18_1x1
|
787 | 1 | tkerber | * cc54_sq3xsq3
|
788 | 1 | tkerber | * cc54_1x1
|
789 | 1 | tkerber | * cc162_sq3xsq3
|
790 | 1 | tkerber | * cc162_1x1
|
791 | 1 | tkerber |
|
792 | 1 | tkerber | (n1,n2,n3) creates an n1 x n2 x n3 monkhorst-pack grid,
|
793 | 1 | tkerber | [k1,k2,k3,...] creates a kpt-grid based on the kpoints
|
794 | 1 | tkerber | defined in k1,k2,k3,...
|
795 | 1 | tkerber |
|
796 | 1 | tkerber | There is also a possibility to have Dacapo (fortran) create
|
797 | 1 | tkerber | the Kpoints in chadi-cohen or monkhorst-pack form. To do this
|
798 | 1 | tkerber | you need to set the KpointSetup.gridtype attribute, and
|
799 | 1 | tkerber | KpointSetup.
|
800 | 1 | tkerber |
|
801 | 1 | tkerber | KpointSetup = [3,0,0]
|
802 | 1 | tkerber | KpointSetup.gridtype = 'ChadiCohen'
|
803 | 1 | tkerber |
|
804 | 1 | tkerber | KpointSetup(1) Chadi-Cohen k-point set
|
805 | 1 | tkerber | 1 6 k-points 1x1
|
806 | 1 | tkerber | 2 18-kpoints sqrt(3)*sqrt(3)
|
807 | 1 | tkerber | 3 18-kpoints 1x1
|
808 | 1 | tkerber | 4 54-kpoints sqrt(3)*sqrt(3)
|
809 | 1 | tkerber | 5 54-kpoints 1x1
|
810 | 1 | tkerber | 6 162-kpoints 1x1
|
811 | 1 | tkerber | 7 12-kpoints 2x3
|
812 | 1 | tkerber | 8 162-kpoints 3xsqrt 3
|
813 | 1 | tkerber |
|
814 | 1 | tkerber | or
|
815 | 1 | tkerber | KpointSetup = [4,4,4]
|
816 | 1 | tkerber | KpointSetup.gridtype = 'MonkhorstPack'
|
817 | 1 | tkerber | we do not use this functionality.
|
818 | 1 | tkerber | '''
|
819 | 1 | tkerber | |
820 | 1 | tkerber | #chadi-cohen
|
821 | 1 | tkerber | if isinstance(kpts, str): |
822 | 1 | tkerber | exec('from ase.dft.kpoints import %s' % kpts)
|
823 | 1 | tkerber | listofkpts = eval(kpts)
|
824 | 1 | tkerber | gridtype = kpts #stored in ncfile
|
825 | 1 | tkerber | #uc = self.get_atoms().get_cell()
|
826 | 1 | tkerber | #listofkpts = np.dot(ccgrid,np.linalg.inv(uc.T))
|
827 | 1 | tkerber | |
828 | 1 | tkerber | #monkhorst-pack grid
|
829 | 1 | tkerber | if np.array(kpts).shape == (3,): |
830 | 1 | tkerber | from ase.dft.kpoints import monkhorst_pack |
831 | 1 | tkerber | N1, N2, N3 = kpts |
832 | 1 | tkerber | listofkpts = monkhorst_pack((N1, N2, N3)) |
833 | 1 | tkerber | gridtype = 'Monkhorst-Pack %s' % str(tuple(kpts)) |
834 | 1 | tkerber | |
835 | 1 | tkerber | #user-defined list is provided
|
836 | 1 | tkerber | if len(np.array(kpts).shape) == 2: |
837 | 1 | tkerber | listofkpts = kpts |
838 | 1 | tkerber | gridtype = 'user_defined_%i_kpts' % len(kpts) #stored in ncfile |
839 | 1 | tkerber | |
840 | 1 | tkerber | nbzkpts = len(listofkpts)
|
841 | 1 | tkerber | |
842 | 1 | tkerber | #we need to get dimensions stored temporarily so
|
843 | 1 | tkerber | #we can delete all dimensions and variables associated with
|
844 | 1 | tkerber | #kpoints before we save them back out.
|
845 | 1 | tkerber | nc2 = netCDF(self.nc, 'r') |
846 | 1 | tkerber | ncdims = nc2.dimensions |
847 | 1 | tkerber | nc2.close() |
848 | 1 | tkerber | |
849 | 1 | tkerber | if 'number_BZ_kpoints' in ncdims: |
850 | 1 | tkerber | self.delete_ncattdimvar(self.nc, |
851 | 1 | tkerber | ncdims=['number_plane_waves',
|
852 | 1 | tkerber | 'number_BZ_kpoints',
|
853 | 1 | tkerber | 'number_IBZ_kpoints'])
|
854 | 1 | tkerber | |
855 | 1 | tkerber | # now define dim and var
|
856 | 1 | tkerber | nc = netCDF(self.nc, 'a') |
857 | 1 | tkerber | nc.createDimension('number_BZ_kpoints', nbzkpts)
|
858 | 1 | tkerber | bv = nc.createVariable('BZKpoints', 'd', ('number_BZ_kpoints', |
859 | 1 | tkerber | 'dim3'))
|
860 | 1 | tkerber | |
861 | 1 | tkerber | bv[:] = listofkpts |
862 | 1 | tkerber | bv.gridtype = gridtype |
863 | 1 | tkerber | nc.sync() |
864 | 1 | tkerber | nc.close() |
865 | 1 | tkerber | |
866 | 1 | tkerber | log.debug('kpts = %s' % str(self.get_kpts())) |
867 | 1 | tkerber | |
868 | 1 | tkerber | self.set_status('new') |
869 | 1 | tkerber | self.ready = False |
870 | 1 | tkerber | |
871 | 1 | tkerber | def atoms_are_equal(self, atoms): |
872 | 1 | tkerber | '''
|
873 | 1 | tkerber | comparison of atoms to self.atoms using tolerances to account
|
874 | 1 | tkerber | for float/double differences and float math.
|
875 | 1 | tkerber | '''
|
876 | 1 | tkerber | |
877 | 1 | tkerber | TOL = 1.0e-6 #angstroms |
878 | 1 | tkerber | |
879 | 1 | tkerber | a = self.atoms.arrays
|
880 | 1 | tkerber | b = atoms.arrays |
881 | 1 | tkerber | |
882 | 1 | tkerber | #match number of atoms in cell
|
883 | 1 | tkerber | lenmatch = len(atoms) == len(self.atoms) |
884 | 1 | tkerber | if lenmatch is not True: |
885 | 1 | tkerber | return False #the next two comparisons fail in this case. |
886 | 1 | tkerber | |
887 | 1 | tkerber | #match positions in cell
|
888 | 1 | tkerber | posmatch = (abs(a['positions'] - b['positions']) <= TOL).all() |
889 | 1 | tkerber | #match cell
|
890 | 1 | tkerber | cellmatch = (abs(self.atoms.get_cell() |
891 | 1 | tkerber | - atoms.get_cell()) <= TOL).all() |
892 | 1 | tkerber | |
893 | 1 | tkerber | if lenmatch and posmatch and cellmatch: |
894 | 1 | tkerber | return True |
895 | 1 | tkerber | else:
|
896 | 1 | tkerber | return False |
897 | 1 | tkerber | |
898 | 1 | tkerber | def set_atoms(self, atoms): |
899 | 1 | tkerber | '''attach an atoms to the calculator and update the ncfile
|
900 | 1 | tkerber |
|
901 | 1 | tkerber | :Parameters:
|
902 | 1 | tkerber |
|
903 | 1 | tkerber | atoms
|
904 | 1 | tkerber | ASE.Atoms instance
|
905 | 1 | tkerber |
|
906 | 1 | tkerber | '''
|
907 | 1 | tkerber | |
908 | 1 | tkerber | log.debug('setting atoms to: %s' % str(atoms)) |
909 | 1 | tkerber | |
910 | 1 | tkerber | if hasattr(self, 'atoms') and self.atoms is not None: |
911 | 1 | tkerber | #return if the atoms are the same. no change needs to be made
|
912 | 1 | tkerber | if self.atoms_are_equal(atoms): |
913 | 1 | tkerber | log.debug('No change to atoms in set_atoms, returning')
|
914 | 1 | tkerber | return
|
915 | 1 | tkerber | |
916 | 1 | tkerber | # some atoms already exist. Test if new atoms are
|
917 | 1 | tkerber | # different from old atoms.
|
918 | 1 | tkerber | # this is redundant
|
919 | 1 | tkerber | if atoms != self.atoms: |
920 | 1 | tkerber | # the new atoms are different from the old ones. Start
|
921 | 1 | tkerber | # a new frame.
|
922 | 1 | tkerber | log.debug('atoms != self.atoms, incrementing')
|
923 | 1 | tkerber | self._increment_frame()
|
924 | 1 | tkerber | |
925 | 1 | tkerber | self.atoms = atoms.copy()
|
926 | 1 | tkerber | self.ready = False |
927 | 1 | tkerber | log.debug('self.atoms = %s' % str(self.atoms)) |
928 | 1 | tkerber | |
929 | 1 | tkerber | def set_ft(self, ft): |
930 | 1 | tkerber | '''set the Fermi temperature for occupation smearing
|
931 | 1 | tkerber |
|
932 | 1 | tkerber | :Parameters:
|
933 | 1 | tkerber |
|
934 | 1 | tkerber | ft : float
|
935 | 1 | tkerber | Fermi temperature in kT (eV)
|
936 | 1 | tkerber |
|
937 | 1 | tkerber | Electronic temperature, corresponding to gaussian occupation
|
938 | 1 | tkerber | statistics. Device used to stabilize the convergence towards
|
939 | 1 | tkerber | the electronic ground state. Higher values stabilizes the
|
940 | 1 | tkerber | convergence. Values in the range 0.1-1.0 eV are recommended,
|
941 | 1 | tkerber | depending on the complexity of the Fermi surface (low values
|
942 | 1 | tkerber | for d-metals and narrow gap semiconducters, higher for free
|
943 | 1 | tkerber | electron-like metals).
|
944 | 1 | tkerber | '''
|
945 | 1 | tkerber | |
946 | 1 | tkerber | nc = netCDF(self.nc, 'a') |
947 | 1 | tkerber | v = 'ElectronicBands'
|
948 | 1 | tkerber | if v in nc.variables: |
949 | 1 | tkerber | vnb = nc.variables[v] |
950 | 1 | tkerber | else:
|
951 | 1 | tkerber | vnb = nc.createVariable('ElectronicBands', 'c', ('dim1',)) |
952 | 1 | tkerber | |
953 | 1 | tkerber | vnb.OccupationStatistics_FermiTemperature = ft |
954 | 1 | tkerber | nc.sync() |
955 | 1 | tkerber | nc.close() |
956 | 1 | tkerber | self.set_status('new') |
957 | 1 | tkerber | self.ready = False |
958 | 1 | tkerber | |
959 | 1 | tkerber | def set_status(self, status): |
960 | 1 | tkerber | '''set the status flag in the netcdf file
|
961 | 1 | tkerber |
|
962 | 1 | tkerber | :Parameters:
|
963 | 1 | tkerber |
|
964 | 1 | tkerber | status : string
|
965 | 1 | tkerber | status flag, e.g. 'new', 'finished'
|
966 | 1 | tkerber | '''
|
967 | 1 | tkerber | |
968 | 1 | tkerber | nc = netCDF(self.nc, 'a') |
969 | 1 | tkerber | nc.status = status |
970 | 1 | tkerber | nc.sync() |
971 | 1 | tkerber | nc.close() |
972 | 1 | tkerber | log.debug('set status to %s' % status)
|
973 | 1 | tkerber | |
974 | 1 | tkerber | def get_spinpol(self): |
975 | 1 | tkerber | 'Returns the spin polarization setting, either True or False'
|
976 | 1 | tkerber | |
977 | 1 | tkerber | nc = netCDF(self.nc, 'r') |
978 | 1 | tkerber | v = 'ElectronicBands'
|
979 | 1 | tkerber | if v in nc.variables: |
980 | 1 | tkerber | vnb = nc.variables[v] |
981 | 1 | tkerber | if hasattr(vnb, 'SpinPolarization'): |
982 | 1 | tkerber | spinpol = vnb.SpinPolarization |
983 | 1 | tkerber | else:
|
984 | 1 | tkerber | spinpol = 1
|
985 | 1 | tkerber | else:
|
986 | 1 | tkerber | spinpol = 1
|
987 | 1 | tkerber | |
988 | 1 | tkerber | nc.close() |
989 | 1 | tkerber | if spinpol == 1: |
990 | 1 | tkerber | return False |
991 | 1 | tkerber | else:
|
992 | 1 | tkerber | return True |
993 | 1 | tkerber | |
994 | 1 | tkerber | def set_spinpol(self, spinpol=False): |
995 | 1 | tkerber | '''set Spin polarization.
|
996 | 1 | tkerber |
|
997 | 1 | tkerber | :Parameters:
|
998 | 1 | tkerber |
|
999 | 1 | tkerber | spinpol : Boolean
|
1000 | 1 | tkerber | set_spinpol(True) spin-polarized.
|
1001 | 1 | tkerber | set_spinpol(False) no spin polarization, default
|
1002 | 1 | tkerber |
|
1003 | 1 | tkerber | Specify whether to perform a spin polarized or unpolarized
|
1004 | 1 | tkerber | calculation.
|
1005 | 1 | tkerber | '''
|
1006 | 1 | tkerber | |
1007 | 1 | tkerber | nc = netCDF(self.nc, 'a') |
1008 | 1 | tkerber | v = 'ElectronicBands'
|
1009 | 1 | tkerber | if v in nc.variables: |
1010 | 1 | tkerber | vnb = nc.variables[v] |
1011 | 1 | tkerber | else:
|
1012 | 1 | tkerber | vnb = nc.createVariable('ElectronicBands', 'c', ('dim1',)) |
1013 | 1 | tkerber | |
1014 | 1 | tkerber | if spinpol is True: |
1015 | 1 | tkerber | vnb.SpinPolarization = 2
|
1016 | 1 | tkerber | else:
|
1017 | 1 | tkerber | vnb.SpinPolarization = 1
|
1018 | 1 | tkerber | |
1019 | 1 | tkerber | nc.sync() |
1020 | 1 | tkerber | nc.close() |
1021 | 1 | tkerber | self.set_status('new') |
1022 | 1 | tkerber | self.ready = False |
1023 | 1 | tkerber | |
1024 | 1 | tkerber | def set_fixmagmom(self, fixmagmom=None): |
1025 | 1 | tkerber | '''set a fixed magnetic moment for a spin polarized calculation
|
1026 | 1 | tkerber |
|
1027 | 1 | tkerber | :Parameters:
|
1028 | 1 | tkerber |
|
1029 | 1 | tkerber | fixmagmom : float
|
1030 | 1 | tkerber | the magnetic moment of the cell in Bohr magnetons
|
1031 | 1 | tkerber | '''
|
1032 | 1 | tkerber | |
1033 | 1 | tkerber | if fixmagmom is None: |
1034 | 1 | tkerber | return
|
1035 | 1 | tkerber | |
1036 | 1 | tkerber | nc = netCDF(self.nc,'a') |
1037 | 1 | tkerber | v = 'ElectronicBands'
|
1038 | 1 | tkerber | if v in nc.variables: |
1039 | 1 | tkerber | vnb = nc.variables[v] |
1040 | 1 | tkerber | else:
|
1041 | 1 | tkerber | vnb = nc.createVariable('ElectronicBands', 'c', ('dim1',)) |
1042 | 1 | tkerber | |
1043 | 1 | tkerber | vnb.SpinPolarization = 2 #You must want spin-polarized |
1044 | 1 | tkerber | vnb.FixedMagneticMoment = fixmagmom |
1045 | 1 | tkerber | nc.sync() |
1046 | 1 | tkerber | nc.close() |
1047 | 1 | tkerber | self.set_status('new') |
1048 | 1 | tkerber | self.ready = False |
1049 | 1 | tkerber | |
1050 | 1 | tkerber | def get_fixmagmom(self): |
1051 | 1 | tkerber | 'returns the value of FixedMagneticMoment'
|
1052 | 1 | tkerber | |
1053 | 1 | tkerber | nc = netCDF(self.nc,'r') |
1054 | 1 | tkerber | if 'ElectronicBands' in nc.variables: |
1055 | 1 | tkerber | v = nc.variables['ElectronicBands']
|
1056 | 1 | tkerber | if hasattr(v,'FixedMagneticMoment'): |
1057 | 1 | tkerber | fixmagmom = v.FixedMagneticMoment |
1058 | 1 | tkerber | else:
|
1059 | 1 | tkerber | fixmagmom = None
|
1060 | 1 | tkerber | else:
|
1061 | 1 | tkerber | fixmagmom = None
|
1062 | 1 | tkerber | nc.close() |
1063 | 1 | tkerber | return fixmagmom
|
1064 | 1 | tkerber | |
1065 | 1 | tkerber | def set_calculate_stress(self, stress=True): |
1066 | 1 | tkerber | '''Turn on stress calculation
|
1067 | 1 | tkerber |
|
1068 | 1 | tkerber | :Parameters:
|
1069 | 1 | tkerber |
|
1070 | 1 | tkerber | stress : boolean
|
1071 | 1 | tkerber | set_calculate_stress(True) calculates stress
|
1072 | 1 | tkerber | set_calculate_stress(False) do not calculate stress
|
1073 | 1 | tkerber | '''
|
1074 | 1 | tkerber | |
1075 | 1 | tkerber | nc = netCDF(self.get_nc(),'a') |
1076 | 1 | tkerber | vs = 'NetCDFOutputControl'
|
1077 | 1 | tkerber | if vs in nc.variables: |
1078 | 1 | tkerber | v = nc.variables[vs] |
1079 | 1 | tkerber | else:
|
1080 | 1 | tkerber | v = nc.createVariable('NetCDFOutputControl', 'c', ('dim1',)) |
1081 | 1 | tkerber | |
1082 | 1 | tkerber | if stress is True: |
1083 | 1 | tkerber | v.PrintTotalStress = 'Yes'
|
1084 | 1 | tkerber | else:
|
1085 | 1 | tkerber | v.PrintTotalStress = 'No'
|
1086 | 1 | tkerber | nc.sync() |
1087 | 1 | tkerber | nc.close() |
1088 | 1 | tkerber | self.set_status('new') |
1089 | 1 | tkerber | self.ready = False |
1090 | 1 | tkerber | |
1091 | 1 | tkerber | def set_nc(self, nc='out.nc'): |
1092 | 1 | tkerber | '''
|
1093 | 1 | tkerber | set filename for the netcdf and text output for this calculation
|
1094 | 1 | tkerber |
|
1095 | 1 | tkerber | :Parameters:
|
1096 | 1 | tkerber |
|
1097 | 1 | tkerber | nc : string
|
1098 | 1 | tkerber | filename for netcdf file
|
1099 | 1 | tkerber |
|
1100 | 1 | tkerber | if the ncfile attached to the calculator is changing, the old
|
1101 | 1 | tkerber | file will be copied to the new file if it doesn not exist so
|
1102 | 1 | tkerber | that all the calculator details are preserved. Otherwise, the
|
1103 | 1 | tkerber |
|
1104 | 1 | tkerber | if the ncfile does not exist, it will get initialized.
|
1105 | 1 | tkerber |
|
1106 | 1 | tkerber | the text file will have the same basename as the ncfile, but
|
1107 | 1 | tkerber | with a .txt extension.
|
1108 | 1 | tkerber | '''
|
1109 | 1 | tkerber | |
1110 | 1 | tkerber | #the first time this is called, there may be no self.nc defined
|
1111 | 1 | tkerber | if not hasattr(self, 'nc'): |
1112 | 1 | tkerber | self.nc = nc
|
1113 | 1 | tkerber | |
1114 | 1 | tkerber | #check if the name is changing and if so, copy the old ncfile
|
1115 | 1 | tkerber | #to the new one. This is necessary to ensure all the
|
1116 | 1 | tkerber | #calculator details are copied over. if the file already
|
1117 | 1 | tkerber | #exists we use the contents of the existing file
|
1118 | 1 | tkerber | if nc != self.nc and not os.path.exists(nc): |
1119 | 1 | tkerber | log.debug('copying %s to %s' % (self.nc, nc)) |
1120 | 1 | tkerber | #import shutil
|
1121 | 1 | tkerber | #shutil.copy(self.nc,nc)
|
1122 | 1 | tkerber | base = os.path.split(nc)[0]
|
1123 | 1 | tkerber | if not os.path.isdir(base) and base is not '': |
1124 | 1 | tkerber | os.makedirs(base) |
1125 | 1 | tkerber | status = os.system('cp %s %s' % (self.nc, nc)) |
1126 | 1 | tkerber | if status != 0: |
1127 | 1 | tkerber | raise Exception, 'Copying ncfile failed.' |
1128 | 1 | tkerber | self.nc = nc
|
1129 | 1 | tkerber | |
1130 | 1 | tkerber | elif os.path.exists(nc):
|
1131 | 1 | tkerber | self._set_frame_number()
|
1132 | 1 | tkerber | self.set_psp_database()
|
1133 | 1 | tkerber | self.atoms = self.read_only_atoms(nc) |
1134 | 1 | tkerber | self.nc = nc
|
1135 | 1 | tkerber | self.update_input_parameters()
|
1136 | 1 | tkerber | |
1137 | 1 | tkerber | #I always want the text file set based on the ncfile
|
1138 | 1 | tkerber | #and I never want to set this myself.
|
1139 | 1 | tkerber | base = os.path.splitext(self.nc)[0] |
1140 | 1 | tkerber | self.txt = base + '.txt' |
1141 | 1 | tkerber | |
1142 | 1 | tkerber | def set_psp(self, |
1143 | 1 | tkerber | sym=None,
|
1144 | 1 | tkerber | z=None,
|
1145 | 1 | tkerber | psp=None):
|
1146 | 1 | tkerber | '''
|
1147 | 1 | tkerber | set the pseudopotential file for a species or an atomic number.
|
1148 | 1 | tkerber |
|
1149 | 1 | tkerber | :Parameters:
|
1150 | 1 | tkerber |
|
1151 | 1 | tkerber | sym : string
|
1152 | 1 | tkerber | chemical symbol of the species
|
1153 | 1 | tkerber |
|
1154 | 1 | tkerber | z : integer
|
1155 | 1 | tkerber | the atomic number of the species
|
1156 | 1 | tkerber |
|
1157 | 1 | tkerber | psp : string
|
1158 | 1 | tkerber | filename of the pseudopotential
|
1159 | 1 | tkerber |
|
1160 | 1 | tkerber |
|
1161 | 1 | tkerber | you can only set sym or z.
|
1162 | 1 | tkerber |
|
1163 | 1 | tkerber | examples::
|
1164 | 1 | tkerber |
|
1165 | 1 | tkerber | set_psp('N',psp='pspfile')
|
1166 | 1 | tkerber | set_psp(z=6,psp='pspfile')
|
1167 | 1 | tkerber | '''
|
1168 | 1 | tkerber | log.debug(str([sym, z, psp]))
|
1169 | 1 | tkerber | if (sym, z, psp) == (None, None, None): |
1170 | 1 | tkerber | return
|
1171 | 1 | tkerber | |
1172 | 1 | tkerber | if (sym is None and z is not None): |
1173 | 1 | tkerber | from ase.data import chemical_symbols |
1174 | 1 | tkerber | sym = chemical_symbols[z] |
1175 | 1 | tkerber | elif (sym is not None and z is None): |
1176 | 1 | tkerber | pass
|
1177 | 1 | tkerber | else:
|
1178 | 1 | tkerber | raise Exception, 'You can only specify Z or sym!' |
1179 | 1 | tkerber | |
1180 | 1 | tkerber | if not hasattr(self, 'psp'): |
1181 | 1 | tkerber | self.set_psp_database()
|
1182 | 1 | tkerber | |
1183 | 1 | tkerber | #only make change if needed
|
1184 | 1 | tkerber | if sym not in self.psp: |
1185 | 1 | tkerber | self.psp[sym] = psp
|
1186 | 1 | tkerber | self.ready = False |
1187 | 1 | tkerber | self.set_status('new') |
1188 | 1 | tkerber | elif self.psp[sym] != psp: |
1189 | 1 | tkerber | self.psp[sym] = psp
|
1190 | 1 | tkerber | self.ready = False |
1191 | 1 | tkerber | self.set_status('new') |
1192 | 1 | tkerber | |
1193 | 1 | tkerber | if not self.ready: |
1194 | 1 | tkerber | #now we update the netcdf file
|
1195 | 1 | tkerber | ncf = netCDF(self.nc, 'a') |
1196 | 1 | tkerber | vn = 'AtomProperty_%s' % sym
|
1197 | 1 | tkerber | if vn not in ncf.variables: |
1198 | 1 | tkerber | p = ncf.createVariable(vn, 'c', ('dim20',)) |
1199 | 1 | tkerber | else:
|
1200 | 1 | tkerber | p = ncf.variables[vn] |
1201 | 1 | tkerber | |
1202 | 1 | tkerber | ppath = self.get_psp(sym=sym)
|
1203 | 1 | tkerber | p.PspotFile = ppath |
1204 | 1 | tkerber | ncf.close() |
1205 | 1 | tkerber | |
1206 | 1 | tkerber | def get_pseudopotentials(self): |
1207 | 1 | tkerber | 'get pseudopotentials set for atoms attached to calculator'
|
1208 | 1 | tkerber | |
1209 | 1 | tkerber | if self.atoms is None: |
1210 | 1 | tkerber | return None |
1211 | 1 | tkerber | |
1212 | 1 | tkerber | psp = {} |
1213 | 1 | tkerber | for atom in self.atoms: |
1214 | 1 | tkerber | psp[atom.symbol] = self.psp[atom.symbol]
|
1215 | 1 | tkerber | return psp
|
1216 | 1 | tkerber | |
1217 | 1 | tkerber | def get_symmetry(self): |
1218 | 1 | tkerber | '''return the type of symmetry used'''
|
1219 | 1 | tkerber | |
1220 | 1 | tkerber | nc = netCDF(self.nc, 'r') |
1221 | 1 | tkerber | if 'UseSymmetry' in nc.variables: |
1222 | 1 | tkerber | sym = string.join(nc.variables['UseSymmetry'][:],'').strip() |
1223 | 1 | tkerber | else:
|
1224 | 1 | tkerber | sym = None
|
1225 | 1 | tkerber | nc.close() |
1226 | 1 | tkerber | if sym in ['Off', None]: |
1227 | 1 | tkerber | return False |
1228 | 1 | tkerber | elif sym == 'Maximum': |
1229 | 1 | tkerber | return True |
1230 | 1 | tkerber | else:
|
1231 | 1 | tkerber | raise Exception, 'Type of symmetry not recognized: %s' % sym |
1232 | 1 | tkerber | |
1233 | 1 | tkerber | def set_symmetry(self, val=False): |
1234 | 1 | tkerber | '''set how symmetry is used to reduce k-points
|
1235 | 1 | tkerber |
|
1236 | 1 | tkerber | :Parameters:
|
1237 | 1 | tkerber |
|
1238 | 1 | tkerber | val : Boolean
|
1239 | 1 | tkerber | set_sym(True) Maximum symmetry is used
|
1240 | 1 | tkerber | set_sym(False) No symmetry is used
|
1241 | 1 | tkerber |
|
1242 | 1 | tkerber | This variable controls the if and how DACAPO should attempt
|
1243 | 1 | tkerber | using symmetry in the calculation. Imposing symmetry generally
|
1244 | 1 | tkerber | speeds up the calculation and reduces numerical noise to some
|
1245 | 1 | tkerber | extent. Symmetry should always be applied to the maximum
|
1246 | 1 | tkerber | extent, when ions are not moved. When relaxing ions, however,
|
1247 | 1 | tkerber | the symmetry of the equilibrium state may be lower than the
|
1248 | 1 | tkerber | initial state. Such an equilibrium state with lower symmetry
|
1249 | 1 | tkerber | is missed, if symmetry is imposed. Molecular dynamics-like
|
1250 | 1 | tkerber | algorithms for ionic propagation will generally not break the
|
1251 | 1 | tkerber | symmetry of the initial state, but some algorithms, like the
|
1252 | 1 | tkerber | BFGS may break the symmetry of the initial state. Recognized
|
1253 | 1 | tkerber | options:
|
1254 | 1 | tkerber |
|
1255 | 1 | tkerber | "Off": No symmetry will be imposed, apart from time inversion
|
1256 | 1 | tkerber | symmetry in recipical space. This is utilized to reduce the
|
1257 | 1 | tkerber | k-point sampling set for Brillouin zone integration and has no
|
1258 | 1 | tkerber | influence on the ionic forces/motion.
|
1259 | 1 | tkerber |
|
1260 | 1 | tkerber | "Maximum": DACAPO will look for symmetry in the supplied
|
1261 | 1 | tkerber | atomic structure and extract the highest possible symmetry
|
1262 | 1 | tkerber | group. During the calculation, DACAPO will impose the found
|
1263 | 1 | tkerber | spatial symmetry on ionic forces and electronic structure,
|
1264 | 1 | tkerber | i.e. the symmetry will be conserved during the calculation.
|
1265 | 1 | tkerber | '''
|
1266 | 1 | tkerber | |
1267 | 1 | tkerber | if val:
|
1268 | 1 | tkerber | symval = 'Maximum'
|
1269 | 1 | tkerber | else:
|
1270 | 1 | tkerber | symval = 'Off'
|
1271 | 1 | tkerber | |
1272 | 1 | tkerber | ncf = netCDF(self.get_nc(), 'a') |
1273 | 1 | tkerber | if 'UseSymmetry' not in ncf.variables: |
1274 | 1 | tkerber | sym = ncf.createVariable('UseSymmetry', 'c', ('dim7',)) |
1275 | 1 | tkerber | else:
|
1276 | 1 | tkerber | sym = ncf.variables['UseSymmetry']
|
1277 | 1 | tkerber | |
1278 | 1 | tkerber | sym[:] = np.array('%7s' % symval, 'c') |
1279 | 1 | tkerber | ncf.sync() |
1280 | 1 | tkerber | ncf.close() |
1281 | 1 | tkerber | self.set_status('new') |
1282 | 1 | tkerber | self.ready = False |
1283 | 1 | tkerber | |
1284 | 1 | tkerber | def set_extracharge(self, val): |
1285 | 1 | tkerber | '''add extra charge to unit cell
|
1286 | 1 | tkerber |
|
1287 | 1 | tkerber | :Parameters:
|
1288 | 1 | tkerber |
|
1289 | 1 | tkerber | val : float
|
1290 | 1 | tkerber | extra electrons to add or subtract from the unit cell
|
1291 | 1 | tkerber |
|
1292 | 1 | tkerber | Fixed extra charge in the unit cell (i.e. deviation from
|
1293 | 1 | tkerber | charge neutrality). This assumes a compensating, positive
|
1294 | 1 | tkerber | constant backgound charge (jellium) to forge overall charge
|
1295 | 1 | tkerber | neutrality.
|
1296 | 1 | tkerber | '''
|
1297 | 1 | tkerber | |
1298 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
1299 | 1 | tkerber | if 'ExtraCharge' in nc.variables: |
1300 | 1 | tkerber | v = nc.variables['ExtraCharge']
|
1301 | 1 | tkerber | else:
|
1302 | 1 | tkerber | v = nc.createVariable('ExtraCharge', 'd', ('dim1',)) |
1303 | 1 | tkerber | |
1304 | 1 | tkerber | v.assignValue(val) |
1305 | 1 | tkerber | nc.sync() |
1306 | 1 | tkerber | nc.close() |
1307 | 1 | tkerber | |
1308 | 1 | tkerber | def get_extracharge(self): |
1309 | 1 | tkerber | 'Return the extra charge set in teh calculator'
|
1310 | 1 | tkerber | |
1311 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
1312 | 1 | tkerber | if 'ExtraCharge' in nc.variables: |
1313 | 1 | tkerber | v = nc.variables['ExtraCharge']
|
1314 | 1 | tkerber | exchg = v.getValue() |
1315 | 1 | tkerber | else:
|
1316 | 1 | tkerber | exchg = None
|
1317 | 1 | tkerber | nc.close() |
1318 | 1 | tkerber | return exchg
|
1319 | 1 | tkerber | |
1320 | 1 | tkerber | def get_extpot(self): |
1321 | 1 | tkerber | 'return the external potential set in teh calculator'
|
1322 | 1 | tkerber | |
1323 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
1324 | 1 | tkerber | if 'ExternalPotential' in nc.variables: |
1325 | 1 | tkerber | v = nc.variables['ExternalPotential']
|
1326 | 1 | tkerber | extpot = v[:] |
1327 | 1 | tkerber | else:
|
1328 | 1 | tkerber | extpot = None
|
1329 | 1 | tkerber | |
1330 | 1 | tkerber | nc.close() |
1331 | 1 | tkerber | return extpot
|
1332 | 1 | tkerber | |
1333 | 1 | tkerber | def set_extpot(self, potgrid): |
1334 | 1 | tkerber | '''add external potential of value
|
1335 | 1 | tkerber |
|
1336 | 1 | tkerber | see this link before using this
|
1337 | 1 | tkerber | https://listserv.fysik.dtu.dk/pipermail/campos/2003-August/000657.html
|
1338 | 1 | tkerber |
|
1339 | 1 | tkerber | :Parameters:
|
1340 | 1 | tkerber |
|
1341 | 1 | tkerber | potgrid : np.array with shape (nx,ny,nz)
|
1342 | 1 | tkerber | the shape must be the same as the fft soft grid
|
1343 | 1 | tkerber | the value of the potential to add
|
1344 | 1 | tkerber |
|
1345 | 1 | tkerber |
|
1346 | 1 | tkerber | you have to know both of the fft grid dimensions ahead of time!
|
1347 | 1 | tkerber | if you know what you are doing, you can set the fft_grid you want
|
1348 | 1 | tkerber | before hand with:
|
1349 | 1 | tkerber | calc.set_fftgrid((n1,n2,n3))
|
1350 | 1 | tkerber | '''
|
1351 | 1 | tkerber | |
1352 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
1353 | 1 | tkerber | if 'ExternalPotential' in nc.variables: |
1354 | 1 | tkerber | v = nc.variables['ExternalPotential']
|
1355 | 1 | tkerber | else:
|
1356 | 1 | tkerber | # I assume here you have the dimensions of potgrid correct
|
1357 | 1 | tkerber | # and that the soft and hard grids are the same.
|
1358 | 1 | tkerber | # if softgrid is defined, Dacapo requires hardgrid to be
|
1359 | 1 | tkerber | # defined too.
|
1360 | 1 | tkerber | s1, s2, s3 = potgrid.shape |
1361 | 1 | tkerber | if 'softgrid_dim1' not in nc.dimensions: |
1362 | 1 | tkerber | nc.createDimension('softgrid_dim1', s1)
|
1363 | 1 | tkerber | nc.createDimension('softgrid_dim2', s2)
|
1364 | 1 | tkerber | nc.createDimension('softgrid_dim3', s3)
|
1365 | 1 | tkerber | nc.createDimension('hardgrid_dim1', s1)
|
1366 | 1 | tkerber | nc.createDimension('hardgrid_dim2', s2)
|
1367 | 1 | tkerber | nc.createDimension('hardgrid_dim3', s3)
|
1368 | 1 | tkerber | |
1369 | 1 | tkerber | v = nc.createVariable('ExternalPotential',
|
1370 | 1 | tkerber | 'd',
|
1371 | 1 | tkerber | ('softgrid_dim1',
|
1372 | 1 | tkerber | 'softgrid_dim2',
|
1373 | 1 | tkerber | 'softgrid_dim3',))
|
1374 | 1 | tkerber | v[:] = potgrid |
1375 | 1 | tkerber | nc.sync() |
1376 | 1 | tkerber | nc.close() |
1377 | 1 | tkerber | self.set_status('new') |
1378 | 1 | tkerber | self.ready = False |
1379 | 1 | tkerber | |
1380 | 1 | tkerber | def set_fftgrid(self, soft=None, hard=None): |
1381 | 1 | tkerber | '''
|
1382 | 1 | tkerber | sets the dimensions of the FFT grid to be used
|
1383 | 1 | tkerber |
|
1384 | 1 | tkerber | :Parameters:
|
1385 | 1 | tkerber |
|
1386 | 1 | tkerber | soft : (n1,n2,n3) integers
|
1387 | 1 | tkerber | make a n1 x n2 x n3 grid
|
1388 | 1 | tkerber |
|
1389 | 1 | tkerber | hard : (n1,n2,n3) integers
|
1390 | 1 | tkerber | make a n1 x n2 x n3 grid
|
1391 | 1 | tkerber |
|
1392 | 1 | tkerber |
|
1393 | 1 | tkerber | >>> calc.set_fftgrid(soft=[42,44,46])
|
1394 | 1 | tkerber | sets the soft and hard grid dimensions to 42,44,46
|
1395 | 1 | tkerber |
|
1396 | 1 | tkerber | >>> calc.set_fftgrid(soft=[42,44,46],hard=[80,84,88])
|
1397 | 1 | tkerber | sets the soft grid dimensions to 42,44,46 and the hard
|
1398 | 1 | tkerber | grid dimensions to 80,84,88
|
1399 | 1 | tkerber |
|
1400 | 1 | tkerber | These are the fast FFt grid numbers listed in fftdimensions.F
|
1401 | 1 | tkerber |
|
1402 | 1 | tkerber | data list_of_fft /2, 4, 6, 8, 10, 12, 14, 16, 18, 20, &
|
1403 | 1 | tkerber | 22,24, 28, 30,32, 36, 40, 42, 44, 48, &
|
1404 | 1 | tkerber | 56,60, 64, 66, 70, 72, 80, 84, 88, 90, &
|
1405 | 1 | tkerber | 96,108,110,112,120,126,128,132,140,144,154, &
|
1406 | 1 | tkerber | 160,168,176,180,192,198,200, &
|
1407 | 1 | tkerber | 216,240,264,270,280,288,324,352,360,378,384,400,432, &
|
1408 | 1 | tkerber | 450,480,540,576,640/
|
1409 | 1 | tkerber |
|
1410 | 1 | tkerber | otherwise you will get some errors from mis-dimensioned variables.
|
1411 | 1 | tkerber |
|
1412 | 1 | tkerber | this is usually automatically set by Dacapo.
|
1413 | 1 | tkerber | '''
|
1414 | 1 | tkerber | |
1415 | 1 | tkerber | if soft is not None: |
1416 | 1 | tkerber | self.delete_ncattdimvar(self.nc, |
1417 | 1 | tkerber | ncdims=['softgrid_dim1',
|
1418 | 1 | tkerber | 'softgrid_dim2',
|
1419 | 1 | tkerber | 'softgrid_dim3'
|
1420 | 1 | tkerber | ], |
1421 | 1 | tkerber | ncvars=[]) |
1422 | 1 | tkerber | |
1423 | 1 | tkerber | |
1424 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
1425 | 1 | tkerber | nc.createDimension('softgrid_dim1', soft[0]) |
1426 | 1 | tkerber | nc.createDimension('softgrid_dim2', soft[1]) |
1427 | 1 | tkerber | nc.createDimension('softgrid_dim3', soft[2]) |
1428 | 1 | tkerber | nc.sync() |
1429 | 1 | tkerber | nc.close() |
1430 | 1 | tkerber | |
1431 | 1 | tkerber | if hard is None: |
1432 | 1 | tkerber | hard = soft |
1433 | 1 | tkerber | |
1434 | 1 | tkerber | if hard is not None: |
1435 | 1 | tkerber | self.delete_ncattdimvar(self.nc, |
1436 | 1 | tkerber | ncdims=['hardgrid_dim1',
|
1437 | 1 | tkerber | 'hardgrid_dim2',
|
1438 | 1 | tkerber | 'hardgrid_dim3'
|
1439 | 1 | tkerber | ], |
1440 | 1 | tkerber | ncvars=[]) |
1441 | 1 | tkerber | nc = netCDF(self.get_nc(),'a') |
1442 | 1 | tkerber | nc.createDimension('hardgrid_dim1', hard[0]) |
1443 | 1 | tkerber | nc.createDimension('hardgrid_dim2', hard[1]) |
1444 | 1 | tkerber | nc.createDimension('hardgrid_dim3', hard[2]) |
1445 | 1 | tkerber | nc.sync() |
1446 | 1 | tkerber | nc.close() |
1447 | 1 | tkerber | |
1448 | 1 | tkerber | self.set_status('new') |
1449 | 1 | tkerber | self.ready = False |
1450 | 1 | tkerber | |
1451 | 1 | tkerber | def get_ascii_debug(self): |
1452 | 1 | tkerber | 'Return the debug settings in Dacapo'
|
1453 | 1 | tkerber | |
1454 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
1455 | 1 | tkerber | if 'PrintDebugInfo' in nc.variables: |
1456 | 1 | tkerber | v = nc.variables['PrintDebugInfo']
|
1457 | 1 | tkerber | debug = string.join(v[:], '')
|
1458 | 1 | tkerber | else:
|
1459 | 1 | tkerber | debug = None
|
1460 | 1 | tkerber | nc.close() |
1461 | 1 | tkerber | return debug
|
1462 | 1 | tkerber | |
1463 | 1 | tkerber | def set_ascii_debug(self, level): |
1464 | 1 | tkerber | '''set the debug level for Dacapo
|
1465 | 1 | tkerber |
|
1466 | 1 | tkerber | :Parameters:
|
1467 | 1 | tkerber |
|
1468 | 1 | tkerber | level : string
|
1469 | 1 | tkerber | one of 'Off', 'MediumLevel', 'HighLevel'
|
1470 | 1 | tkerber | '''
|
1471 | 1 | tkerber | |
1472 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
1473 | 1 | tkerber | if 'PrintDebugInfo' in nc.variables: |
1474 | 1 | tkerber | v = nc.variables['PrintDebugInfo']
|
1475 | 1 | tkerber | else:
|
1476 | 1 | tkerber | if 'dim20' not in nc.dimensions: |
1477 | 1 | tkerber | nc.createDimension('dim20', 20) |
1478 | 1 | tkerber | v = nc.createVariable('PrintDebugInfo', 'c', ('dim20',)) |
1479 | 1 | tkerber | |
1480 | 1 | tkerber | v[:] = np.array('%20s' % level, dtype='c') |
1481 | 1 | tkerber | nc.sync() |
1482 | 1 | tkerber | nc.close() |
1483 | 1 | tkerber | self.set_status('new') |
1484 | 1 | tkerber | self.ready = False |
1485 | 1 | tkerber | |
1486 | 1 | tkerber | def get_ncoutput(self): |
1487 | 1 | tkerber | 'returns the control variables for the ncfile'
|
1488 | 1 | tkerber | |
1489 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
1490 | 1 | tkerber | if 'NetCDFOutputControl' in nc.variables: |
1491 | 1 | tkerber | v = nc.variables['NetCDFOutputControl']
|
1492 | 1 | tkerber | ncoutput = {} |
1493 | 1 | tkerber | if hasattr(v, 'PrintWaveFunction'): |
1494 | 1 | tkerber | ncoutput['wf'] = v.PrintWaveFunction
|
1495 | 1 | tkerber | if hasattr(v, 'PrintChargeDensity'): |
1496 | 1 | tkerber | ncoutput['cd'] = v.PrintChargeDensity
|
1497 | 1 | tkerber | if hasattr(v, 'PrintEffPotential'): |
1498 | 1 | tkerber | ncoutput['efp'] = v.PrintEffPotential
|
1499 | 1 | tkerber | if hasattr(v, 'PrintElsPotential'): |
1500 | 1 | tkerber | ncoutput['esp'] = v.PrintElsPotential
|
1501 | 1 | tkerber | else:
|
1502 | 1 | tkerber | ncoutput = None
|
1503 | 1 | tkerber | nc.close() |
1504 | 1 | tkerber | return ncoutput
|
1505 | 1 | tkerber | |
1506 | 1 | tkerber | def set_ncoutput(self, |
1507 | 1 | tkerber | wf=None,
|
1508 | 1 | tkerber | cd=None,
|
1509 | 1 | tkerber | efp=None,
|
1510 | 1 | tkerber | esp=None):
|
1511 | 1 | tkerber | '''set the output of large variables in the netcdf output file
|
1512 | 1 | tkerber |
|
1513 | 1 | tkerber | :Parameters:
|
1514 | 1 | tkerber |
|
1515 | 1 | tkerber | wf : string
|
1516 | 1 | tkerber | controls output of wavefunction. values can
|
1517 | 1 | tkerber | be 'Yes' or 'No'
|
1518 | 1 | tkerber |
|
1519 | 1 | tkerber | cd : string
|
1520 | 1 | tkerber | controls output of charge density. values can
|
1521 | 1 | tkerber | be 'Yes' or 'No'
|
1522 | 1 | tkerber |
|
1523 | 1 | tkerber | efp : string
|
1524 | 1 | tkerber | controls output of effective potential. values can
|
1525 | 1 | tkerber | be 'Yes' or 'No'
|
1526 | 1 | tkerber |
|
1527 | 1 | tkerber | esp : string
|
1528 | 1 | tkerber | controls output of electrostatic potential. values can
|
1529 | 1 | tkerber | be 'Yes' or 'No'
|
1530 | 1 | tkerber | '''
|
1531 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
1532 | 1 | tkerber | if 'NetCDFOutputControl' in nc.variables: |
1533 | 1 | tkerber | v = nc.variables['NetCDFOutputControl']
|
1534 | 1 | tkerber | else:
|
1535 | 1 | tkerber | v = nc.createVariable('NetCDFOutputControl', 'c', ()) |
1536 | 1 | tkerber | |
1537 | 1 | tkerber | if wf is not None: |
1538 | 1 | tkerber | v.PrintWaveFunction = wf |
1539 | 1 | tkerber | if cd is not None: |
1540 | 1 | tkerber | v.PrintChargeDensity = cd |
1541 | 1 | tkerber | if efp is not None: |
1542 | 1 | tkerber | v.PrintEffPotential = efp |
1543 | 1 | tkerber | if esp is not None: |
1544 | 1 | tkerber | v.PrintElsPotential = esp |
1545 | 1 | tkerber | |
1546 | 1 | tkerber | nc.sync() |
1547 | 1 | tkerber | nc.close() |
1548 | 1 | tkerber | self.set_status('new') |
1549 | 1 | tkerber | self.ready = False |
1550 | 1 | tkerber | |
1551 | 1 | tkerber | def get_ados(self, **kwargs): |
1552 | 1 | tkerber | '''
|
1553 | 1 | tkerber | attempt at maintaining backward compatibility with get_ados
|
1554 | 1 | tkerber | returning data
|
1555 | 1 | tkerber |
|
1556 | 1 | tkerber | Now when we call calc.get_ados() it will return settings,
|
1557 | 1 | tkerber |
|
1558 | 1 | tkerber | and calc.get_ados(atoms=[],...) should return data
|
1559 | 1 | tkerber |
|
1560 | 1 | tkerber | '''
|
1561 | 1 | tkerber | |
1562 | 1 | tkerber | if len(kwargs) != 0: |
1563 | 1 | tkerber | return self.get_ados_data(**kwargs) |
1564 | 1 | tkerber | |
1565 | 1 | tkerber | nc = netCDF(self.get_nc(),'r') |
1566 | 1 | tkerber | if 'PrintAtomProjectedDOS' in nc.variables: |
1567 | 1 | tkerber | v = nc.variables['PrintAtomProjectedDOS']
|
1568 | 1 | tkerber | ados = {} |
1569 | 1 | tkerber | if hasattr(v, 'EnergyWindow'): |
1570 | 1 | tkerber | ados['energywindow'] = v.EnergyWindow
|
1571 | 1 | tkerber | if hasattr(v, 'EnergyWidth'): |
1572 | 1 | tkerber | ados['energywidth'] = v.EnergyWidth
|
1573 | 1 | tkerber | if hasattr(v, 'NumberEnergyPoints'): |
1574 | 1 | tkerber | ados['npoints'] = v.NumberEnergyPoints
|
1575 | 1 | tkerber | if hasattr(v, 'CutoffRadius'): |
1576 | 1 | tkerber | ados['cutoff'] = v.CutoffRadius
|
1577 | 1 | tkerber | else:
|
1578 | 1 | tkerber | ados = None
|
1579 | 1 | tkerber | |
1580 | 1 | tkerber | nc.close() |
1581 | 1 | tkerber | return ados
|
1582 | 1 | tkerber | |
1583 | 1 | tkerber | def set_ados(self, |
1584 | 1 | tkerber | energywindow=(-15,5), |
1585 | 1 | tkerber | energywidth=0.2,
|
1586 | 1 | tkerber | npoints=250,
|
1587 | 1 | tkerber | cutoff=1.0):
|
1588 | 1 | tkerber | '''
|
1589 | 1 | tkerber | setup calculation of atom-projected density of states
|
1590 | 1 | tkerber |
|
1591 | 1 | tkerber | :Parameters:
|
1592 | 1 | tkerber |
|
1593 | 1 | tkerber | energywindow : (float, float)
|
1594 | 1 | tkerber | sets (emin,emax) in eV referenced to the Fermi level
|
1595 | 1 | tkerber |
|
1596 | 1 | tkerber | energywidth : float
|
1597 | 1 | tkerber | the gaussian used in smearing
|
1598 | 1 | tkerber |
|
1599 | 1 | tkerber | npoints : integer
|
1600 | 1 | tkerber | the number of points to sample the DOS at
|
1601 | 1 | tkerber |
|
1602 | 1 | tkerber | cutoff : float
|
1603 | 1 | tkerber | the cutoff radius in angstroms for the integration.
|
1604 | 1 | tkerber | '''
|
1605 | 1 | tkerber | |
1606 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
1607 | 1 | tkerber | if 'PrintAtomProjectedDOS' in nc.variables: |
1608 | 1 | tkerber | v = nc.variables['PrintAtomProjectedDOS']
|
1609 | 1 | tkerber | else:
|
1610 | 1 | tkerber | v = nc.createVariable('PrintAtomProjectedDOS', 'c', ()) |
1611 | 1 | tkerber | |
1612 | 1 | tkerber | v.EnergyWindow = energywindow |
1613 | 1 | tkerber | v.EnergyWidth = energywidth |
1614 | 1 | tkerber | v.NumberEnergyPoints = npoints |
1615 | 1 | tkerber | v.CutoffRadius = cutoff |
1616 | 1 | tkerber | |
1617 | 1 | tkerber | nc.sync() |
1618 | 1 | tkerber | nc.close() |
1619 | 1 | tkerber | self.set_status('new') |
1620 | 1 | tkerber | self.ready = False |
1621 | 1 | tkerber | |
1622 | 1 | tkerber | def get_mdos(self): |
1623 | 1 | tkerber | 'return multicentered projected dos parameters'
|
1624 | 1 | tkerber | nc = netCDF(self.get_nc(),'r') |
1625 | 1 | tkerber | |
1626 | 1 | tkerber | mdos = {} |
1627 | 1 | tkerber | |
1628 | 1 | tkerber | if 'MultiCenterProjectedDOS' in nc.variables: |
1629 | 1 | tkerber | v = nc.variables['MultiCenterProjectedDOS']
|
1630 | 1 | tkerber | mdos['energywindow'] = v.EnergyWindow
|
1631 | 1 | tkerber | mdos['energywidth'] = v.EnergyWidth
|
1632 | 1 | tkerber | mdos['numberenergypoints'] = v.NumberEnergyPoints
|
1633 | 1 | tkerber | mdos['cutoffradius'] = v.CutoffRadius
|
1634 | 1 | tkerber | mdos['mcenters'] = eval(v.mcenters) |
1635 | 1 | tkerber | |
1636 | 1 | tkerber | nc.close() |
1637 | 1 | tkerber | |
1638 | 1 | tkerber | return mdos
|
1639 | 1 | tkerber | |
1640 | 1 | tkerber | def get_mdos_data(self, |
1641 | 1 | tkerber | spin=0,
|
1642 | 1 | tkerber | cutoffradius='infinite'):
|
1643 | 1 | tkerber | '''returns data from multicentered projection
|
1644 | 1 | tkerber |
|
1645 | 1 | tkerber |
|
1646 | 1 | tkerber | returns (mdos, rotmat)
|
1647 | 1 | tkerber |
|
1648 | 1 | tkerber | the rotation matrices are retrieved from the text file. I am
|
1649 | 1 | tkerber | not sure what you would do with these, but there was a note
|
1650 | 1 | tkerber | about them in the old documentation so I put the code to
|
1651 | 1 | tkerber | retrieve them here. the syntax for the return value is:
|
1652 | 1 | tkerber | rotmat[atom#][label] returns the rotation matrix for the
|
1653 | 1 | tkerber | center on the atom# for label. I do not not know what the
|
1654 | 1 | tkerber | label refers to.
|
1655 | 1 | tkerber | '''
|
1656 | 1 | tkerber | |
1657 | 1 | tkerber | if self.calculation_required(): |
1658 | 1 | tkerber | self.calculate()
|
1659 | 1 | tkerber | |
1660 | 1 | tkerber | nc = netCDF(self.get_nc(),'r') |
1661 | 1 | tkerber | icut = 1 #short |
1662 | 1 | tkerber | if cutoffradius == "infinite": |
1663 | 1 | tkerber | icut = 0
|
1664 | 1 | tkerber | |
1665 | 1 | tkerber | #var = nc.variables['MultiCenterProjectedDOS']
|
1666 | 1 | tkerber | integrated = nc.variables['MultiCenterProjectedDOS_IntegratedDOS'][:]
|
1667 | 1 | tkerber | tz = 'MultiCenterProjectedDOS_EnergyResolvedDOS'
|
1668 | 1 | tkerber | energyresolved = nc.variables[tz][:] |
1669 | 1 | tkerber | energygrid = nc.variables['MultiCenterProjectedDOS_EnergyGrid'][:]
|
1670 | 1 | tkerber | |
1671 | 1 | tkerber | number_of_multicenters = integrated.shape[0]
|
1672 | 1 | tkerber | #number_of_cutoff = integrated.shape[1]
|
1673 | 1 | tkerber | #number_of_spin = integrated.shape[2]
|
1674 | 1 | tkerber | |
1675 | 1 | tkerber | multicenterprojections = [] |
1676 | 1 | tkerber | for multicenter in range(number_of_multicenters): |
1677 | 1 | tkerber | #orbitals = var[multicenter]
|
1678 | 1 | tkerber | energyresolveddata = energyresolved[multicenter, icut, spin, :] |
1679 | 1 | tkerber | #integrateddata = integrated[multicenter, icut, spin]
|
1680 | 1 | tkerber | multicenterprojections.append([energygrid, energyresolveddata]) |
1681 | 1 | tkerber | |
1682 | 1 | tkerber | log.info('Found %d multicenters' % len(multicenterprojections)) |
1683 | 1 | tkerber | nc.close() |
1684 | 1 | tkerber | |
1685 | 1 | tkerber | #now parse the text file for the rotation matrices
|
1686 | 1 | tkerber | rot_mat_lines = [] |
1687 | 1 | tkerber | txt = self.get_txt()
|
1688 | 1 | tkerber | if os.path.exists(txt):
|
1689 | 1 | tkerber | f = open(txt,'r') |
1690 | 1 | tkerber | for line in f: |
1691 | 1 | tkerber | if 'MUL: Rmatrix' in line: |
1692 | 1 | tkerber | rot_mat_lines.append(line) |
1693 | 1 | tkerber | f.close() |
1694 | 1 | tkerber | |
1695 | 1 | tkerber | rotmat = [] |
1696 | 1 | tkerber | for line in rot_mat_lines: |
1697 | 1 | tkerber | fields = line.split() |
1698 | 1 | tkerber | novl = int(fields[2]) |
1699 | 1 | tkerber | ncen = int(fields[3]) |
1700 | 1 | tkerber | row = [float(x) for x in fields[4:]] |
1701 | 1 | tkerber | |
1702 | 1 | tkerber | try:
|
1703 | 1 | tkerber | rotmat[novl-1][ncen-1].append(row) |
1704 | 1 | tkerber | except IndexError: |
1705 | 1 | tkerber | try:
|
1706 | 1 | tkerber | rotmat[novl-1].append([])
|
1707 | 1 | tkerber | rotmat[novl-1][ncen-1].append(row) |
1708 | 1 | tkerber | except IndexError: |
1709 | 1 | tkerber | rotmat.append([]) |
1710 | 1 | tkerber | rotmat[novl-1].append([])
|
1711 | 1 | tkerber | rotmat[novl-1][ncen-1].append(row) |
1712 | 1 | tkerber | else:
|
1713 | 1 | tkerber | rotmat = None
|
1714 | 1 | tkerber | |
1715 | 1 | tkerber | return (multicenterprojections, rotmat)
|
1716 | 1 | tkerber | |
1717 | 1 | tkerber | def set_mdos(self, |
1718 | 1 | tkerber | mcenters=None,
|
1719 | 1 | tkerber | energywindow=(-15,5), |
1720 | 1 | tkerber | energywidth=0.2,
|
1721 | 1 | tkerber | numberenergypoints=250,
|
1722 | 1 | tkerber | cutoffradius=1.0):
|
1723 | 1 | tkerber | '''Setup multicentered projected DOS.
|
1724 | 1 | tkerber |
|
1725 | 1 | tkerber | mcenters
|
1726 | 1 | tkerber | a list of tuples containing (atom#,l,m,weight)
|
1727 | 1 | tkerber | (0,0,0,1.0) specifies (atom 0, l=0, m=0, weight=1.0) an s orbital
|
1728 | 1 | tkerber | on atom 0
|
1729 | 1 | tkerber |
|
1730 | 1 | tkerber | (1,1,1,1.0) specifies (atom 1, l=1, m=1, weight=1.0) a p orbital
|
1731 | 1 | tkerber | with m = +1 on atom 0
|
1732 | 1 | tkerber |
|
1733 | 1 | tkerber | l=0 s-orbital
|
1734 | 1 | tkerber | l=1 p-orbital
|
1735 | 1 | tkerber | l=2 d-orbital
|
1736 | 1 | tkerber |
|
1737 | 1 | tkerber | m in range of ( -l ... 0 ... +l )
|
1738 | 1 | tkerber |
|
1739 | 1 | tkerber | The direction cosines for which the spherical harmonics are
|
1740 | 1 | tkerber | set up are using the next different atom in the list
|
1741 | 1 | tkerber | (cyclic) as direction pointer, so the z-direction is chosen
|
1742 | 1 | tkerber | along the direction to this next atom. At the moment the
|
1743 | 1 | tkerber | rotation matrices is only given in the text file, you can
|
1744 | 1 | tkerber | use grep'MUL: Rmatrix' out_o2.txt to get this information.
|
1745 | 1 | tkerber |
|
1746 | 1 | tkerber | adapated from old MultiCenterProjectedDOS.py
|
1747 | 1 | tkerber | '''
|
1748 | 1 | tkerber | if mcenters is None: |
1749 | 1 | tkerber | return
|
1750 | 1 | tkerber | |
1751 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
1752 | 1 | tkerber | |
1753 | 1 | tkerber | _listofmcenters_ = mcenters |
1754 | 1 | tkerber | |
1755 | 1 | tkerber | # get number of multi centers
|
1756 | 1 | tkerber | ncenters = len(_listofmcenters_)
|
1757 | 1 | tkerber | # get max number of orbitals any center
|
1758 | 1 | tkerber | max_orbitals = max(map(len, _listofmcenters_)) |
1759 | 1 | tkerber | |
1760 | 1 | tkerber | mmatrix = np.zeros([ncenters, max_orbitals, 4], np.float)
|
1761 | 1 | tkerber | ncenter = 0
|
1762 | 1 | tkerber | for multicenter in _listofmcenters_: |
1763 | 1 | tkerber | norbital = 0
|
1764 | 1 | tkerber | for orbital in multicenter: |
1765 | 1 | tkerber | mmatrix[ncenter, norbital] = orbital |
1766 | 1 | tkerber | norbital = norbital + 1
|
1767 | 1 | tkerber | |
1768 | 1 | tkerber | # signal that this multicenter contains less than
|
1769 | 1 | tkerber | # max_orbital orbitals
|
1770 | 1 | tkerber | if len(multicenter) < max_orbitals: |
1771 | 1 | tkerber | mmatrix[ncenter, len(multicenter):max_orbitals] = (-1.0, 0, |
1772 | 1 | tkerber | 0, 0) |
1773 | 1 | tkerber | |
1774 | 1 | tkerber | ncenter = ncenter + 1
|
1775 | 1 | tkerber | |
1776 | 1 | tkerber | nc.createDimension('max_orbitals', max_orbitals)
|
1777 | 1 | tkerber | nc.createDimension('number_of_multicenters', ncenters)
|
1778 | 1 | tkerber | |
1779 | 1 | tkerber | if 'MultiCenterProjectedDOS' in nc.variables: |
1780 | 1 | tkerber | v = nc.variables['MultiCenterProjectedDOS']
|
1781 | 1 | tkerber | else:
|
1782 | 1 | tkerber | v = nc.createVariable('MultiCenterProjectedDOS',
|
1783 | 1 | tkerber | 'd',
|
1784 | 1 | tkerber | ('number_of_multicenters',
|
1785 | 1 | tkerber | 'max_orbitals',
|
1786 | 1 | tkerber | 'dim4'))
|
1787 | 1 | tkerber | |
1788 | 1 | tkerber | v.EnergyWindow = energywindow |
1789 | 1 | tkerber | v.EnergyWidth = energywidth |
1790 | 1 | tkerber | v.NumberEnergyPoints = numberenergypoints |
1791 | 1 | tkerber | v.CutoffRadius = cutoffradius |
1792 | 1 | tkerber | |
1793 | 1 | tkerber | #this is kind of hacky, but it is needed for get_mdos so you
|
1794 | 1 | tkerber | #can tell if the input is changed.
|
1795 | 1 | tkerber | v.mcenters = str(mcenters)
|
1796 | 1 | tkerber | |
1797 | 1 | tkerber | v[:] = mmatrix |
1798 | 1 | tkerber | |
1799 | 1 | tkerber | nc.sync() |
1800 | 1 | tkerber | nc.close() |
1801 | 1 | tkerber | |
1802 | 1 | tkerber | def set_debug(self, debug): |
1803 | 1 | tkerber | '''
|
1804 | 1 | tkerber | set debug level for python logging
|
1805 | 1 | tkerber |
|
1806 | 1 | tkerber | debug should be an integer from 0-100 or one of the logging
|
1807 | 1 | tkerber | constants like logging.DEBUG, logging.WARN, etc...
|
1808 | 1 | tkerber |
|
1809 | 1 | tkerber | '''
|
1810 | 1 | tkerber | |
1811 | 1 | tkerber | self.debug = debug
|
1812 | 1 | tkerber | log.setLevel(debug) |
1813 | 1 | tkerber | |
1814 | 1 | tkerber | def get_debug(self): |
1815 | 1 | tkerber | 'Return the python logging level'
|
1816 | 1 | tkerber | |
1817 | 1 | tkerber | return self.debug |
1818 | 1 | tkerber | |
1819 | 1 | tkerber | def get_decoupling(self): |
1820 | 1 | tkerber | 'return the electrostatic decoupling parameters'
|
1821 | 1 | tkerber | |
1822 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
1823 | 1 | tkerber | if 'Decoupling' in nc.variables: |
1824 | 1 | tkerber | v = nc.variables['Decoupling']
|
1825 | 1 | tkerber | decoupling = {} |
1826 | 1 | tkerber | if hasattr(v,'NumberOfGaussians'): |
1827 | 1 | tkerber | decoupling['ngaussians'] = v.NumberOfGaussians
|
1828 | 1 | tkerber | if hasattr(v,'ECutoff'): |
1829 | 1 | tkerber | decoupling['ecutoff'] = v.ECutoff
|
1830 | 1 | tkerber | if hasattr(v,'WidthOfGaussian'): |
1831 | 1 | tkerber | decoupling['gausswidth'] = v.WidthOfGaussian
|
1832 | 1 | tkerber | else:
|
1833 | 1 | tkerber | decoupling = None
|
1834 | 1 | tkerber | nc.close() |
1835 | 1 | tkerber | return decoupling
|
1836 | 1 | tkerber | |
1837 | 1 | tkerber | def set_decoupling(self, |
1838 | 1 | tkerber | ngaussians=3,
|
1839 | 1 | tkerber | ecutoff=100,
|
1840 | 1 | tkerber | gausswidth=0.35):
|
1841 | 1 | tkerber | '''
|
1842 | 1 | tkerber | Decoupling activates the three dimensional electrostatic
|
1843 | 1 | tkerber | decoupling. Based on paper by Peter E. Bloechl: JCP 103
|
1844 | 1 | tkerber | page7422 (1995).
|
1845 | 1 | tkerber |
|
1846 | 1 | tkerber | :Parameters:
|
1847 | 1 | tkerber |
|
1848 | 1 | tkerber | ngaussians : int
|
1849 | 1 | tkerber | The number of gaussian functions per atom
|
1850 | 1 | tkerber | used for constructing the model charge of the system
|
1851 | 1 | tkerber |
|
1852 | 1 | tkerber | ecutoff : int
|
1853 | 1 | tkerber | The cut off energy (eV) of system charge density in
|
1854 | 1 | tkerber | g-space used when mapping constructing the model change of
|
1855 | 1 | tkerber | the system, i.e. only charge density components below
|
1856 | 1 | tkerber | ECutoff enters when constructing the model change.
|
1857 | 1 | tkerber |
|
1858 | 1 | tkerber | gausswidth : float
|
1859 | 1 | tkerber | The width of the Gaussians defined by
|
1860 | 1 | tkerber | $widthofgaussian*1.5^(n-1)$ $n$=(1 to numberofgaussians)
|
1861 | 1 | tkerber |
|
1862 | 1 | tkerber | '''
|
1863 | 1 | tkerber | |
1864 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
1865 | 1 | tkerber | if 'Decoupling' in nc.variables: |
1866 | 1 | tkerber | v = nc.variables['Decoupling']
|
1867 | 1 | tkerber | else:
|
1868 | 1 | tkerber | v = nc.createVariable('Decoupling', 'c', ()) |
1869 | 1 | tkerber | |
1870 | 1 | tkerber | v.NumberOfGaussians = ngaussians |
1871 | 1 | tkerber | v.ECutoff = ecutoff |
1872 | 1 | tkerber | v.WidthOfGaussian = gausswidth |
1873 | 1 | tkerber | |
1874 | 1 | tkerber | nc.sync() |
1875 | 1 | tkerber | nc.close() |
1876 | 1 | tkerber | self.set_status('new') |
1877 | 1 | tkerber | self.ready = False |
1878 | 1 | tkerber | |
1879 | 1 | tkerber | def set_external_dipole(self, |
1880 | 1 | tkerber | value, |
1881 | 1 | tkerber | position=None):
|
1882 | 1 | tkerber | '''
|
1883 | 1 | tkerber | Externally imposed dipole potential. This option overwrites
|
1884 | 1 | tkerber | DipoleCorrection if set.
|
1885 | 1 | tkerber |
|
1886 | 1 | tkerber | :Parameters:
|
1887 | 1 | tkerber |
|
1888 | 1 | tkerber | value : float
|
1889 | 1 | tkerber | units of volts
|
1890 | 1 | tkerber |
|
1891 | 1 | tkerber | position : float
|
1892 | 1 | tkerber | scaled coordinates along third unit cell direction.
|
1893 | 1 | tkerber | if None, the compensation dipole layer plane in the
|
1894 | 1 | tkerber | vacuum position farthest from any other atoms on both
|
1895 | 1 | tkerber | sides of the slab. Do not set to 0.0.
|
1896 | 1 | tkerber | '''
|
1897 | 1 | tkerber | |
1898 | 1 | tkerber | var = 'ExternalDipolePotential'
|
1899 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
1900 | 1 | tkerber | if var in nc.variables: |
1901 | 1 | tkerber | v = nc.variables[var] |
1902 | 1 | tkerber | else:
|
1903 | 1 | tkerber | v = nc.createVariable('ExternalDipolePotential', 'd', ()) |
1904 | 1 | tkerber | |
1905 | 1 | tkerber | v.assignValue(value) |
1906 | 1 | tkerber | if position is not None: |
1907 | 1 | tkerber | v.DipoleLayerPosition = position |
1908 | 1 | tkerber | |
1909 | 1 | tkerber | nc.sync() |
1910 | 1 | tkerber | nc.close() |
1911 | 1 | tkerber | self.set_status('new') |
1912 | 1 | tkerber | self.ready = False |
1913 | 1 | tkerber | |
1914 | 1 | tkerber | def get_external_dipole(self): |
1915 | 1 | tkerber | 'return the External dipole settings'
|
1916 | 1 | tkerber | |
1917 | 1 | tkerber | var = 'ExternalDipolePotential'
|
1918 | 1 | tkerber | nc = netCDF(self.get_nc(),'r') |
1919 | 1 | tkerber | if var in nc.variables: |
1920 | 1 | tkerber | v = nc.variables[var] |
1921 | 1 | tkerber | value = v.getValue() |
1922 | 1 | tkerber | if hasattr(v, 'DipoleLayerPosition'): |
1923 | 1 | tkerber | position = v.DipoleLayerPosition |
1924 | 1 | tkerber | else:
|
1925 | 1 | tkerber | position = None
|
1926 | 1 | tkerber | |
1927 | 1 | tkerber | ed = {'value':value, 'position':position} |
1928 | 1 | tkerber | else:
|
1929 | 1 | tkerber | ed = None
|
1930 | 1 | tkerber | nc.close() |
1931 | 1 | tkerber | return ed
|
1932 | 1 | tkerber | |
1933 | 1 | tkerber | def set_dipole(self, |
1934 | 1 | tkerber | status=True,
|
1935 | 1 | tkerber | mixpar=0.2,
|
1936 | 1 | tkerber | initval=0.0,
|
1937 | 1 | tkerber | adddipfield=0.0,
|
1938 | 1 | tkerber | position=None):
|
1939 | 1 | tkerber | '''turn on and set dipole correction scheme
|
1940 | 1 | tkerber |
|
1941 | 1 | tkerber | :Parameters:
|
1942 | 1 | tkerber |
|
1943 | 1 | tkerber | status : Boolean
|
1944 | 1 | tkerber | True turns dipole on. False turns Dipole off
|
1945 | 1 | tkerber |
|
1946 | 1 | tkerber | mixpar : float
|
1947 | 1 | tkerber | Mixing Parameter for the the dipole correction field
|
1948 | 1 | tkerber | during the electronic minimization process. If instabilities
|
1949 | 1 | tkerber | occur during electronic minimization, this value may be
|
1950 | 1 | tkerber | decreased.
|
1951 | 1 | tkerber |
|
1952 | 1 | tkerber | initval : float
|
1953 | 1 | tkerber | initial value to start at
|
1954 | 1 | tkerber |
|
1955 | 1 | tkerber | adddipfield : float
|
1956 | 1 | tkerber | additional dipole field to add
|
1957 | 1 | tkerber | units : V/ang
|
1958 | 1 | tkerber | External additive, constant electrostatic field along
|
1959 | 1 | tkerber | third unit cell vector, corresponding to an external
|
1960 | 1 | tkerber | dipole layer. The field discontinuity follows the position
|
1961 | 1 | tkerber | of the dynamical dipole correction, i.e. if
|
1962 | 1 | tkerber | DipoleCorrection:DipoleLayerPosition is set, the field
|
1963 | 1 | tkerber | discontinuity is at this value, otherwise it is at the
|
1964 | 1 | tkerber | vacuum position farthest from any other atoms on both
|
1965 | 1 | tkerber | sides of the slab.
|
1966 | 1 | tkerber |
|
1967 | 1 | tkerber | position : float
|
1968 | 1 | tkerber | scaled coordinates along third unit cell direction.
|
1969 | 1 | tkerber | If this attribute is set, DACAPO will position the
|
1970 | 1 | tkerber | compensation dipole layer plane in at the provided value.
|
1971 | 1 | tkerber | If this attribute is not set, DACAPO will put the compensation
|
1972 | 1 | tkerber | dipole layer plane in the vacuum position farthest from any
|
1973 | 1 | tkerber | other atoms on both sides of the slab. Do not set this to
|
1974 | 1 | tkerber | 0.0
|
1975 | 1 | tkerber |
|
1976 | 1 | tkerber |
|
1977 | 1 | tkerber | calling set_dipole() sets all default values.
|
1978 | 1 | tkerber |
|
1979 | 1 | tkerber | '''
|
1980 | 1 | tkerber | if status == False: |
1981 | 1 | tkerber | self.delete_ncattdimvar(self.nc, ncvars=['DipoleCorrection']) |
1982 | 1 | tkerber | return
|
1983 | 1 | tkerber | |
1984 | 1 | tkerber | ncf = netCDF(self.get_nc(), 'a') |
1985 | 1 | tkerber | if 'DipoleCorrection' not in ncf.variables: |
1986 | 1 | tkerber | dip = ncf.createVariable('DipoleCorrection', 'c', ()) |
1987 | 1 | tkerber | else:
|
1988 | 1 | tkerber | dip = ncf.variables['DipoleCorrection']
|
1989 | 1 | tkerber | dip.MixingParameter = mixpar |
1990 | 1 | tkerber | dip.InitialValue = initval |
1991 | 1 | tkerber | dip.AdditiveDipoleField = adddipfield |
1992 | 1 | tkerber | |
1993 | 1 | tkerber | if position is not None: |
1994 | 1 | tkerber | dip.DipoleLayerPosition = position |
1995 | 1 | tkerber | |
1996 | 1 | tkerber | ncf.sync() |
1997 | 1 | tkerber | ncf.close() |
1998 | 1 | tkerber | self.set_status('new') |
1999 | 1 | tkerber | self.ready = False |
2000 | 1 | tkerber | |
2001 | 1 | tkerber | def set_stay_alive(self, value): |
2002 | 1 | tkerber | 'set the stay alive setting'
|
2003 | 1 | tkerber | |
2004 | 1 | tkerber | self.delete_ncattdimvar(self.nc, |
2005 | 1 | tkerber | ncvars=['Dynamics'])
|
2006 | 1 | tkerber | |
2007 | 1 | tkerber | if value in [True, False]: |
2008 | 1 | tkerber | self.stay_alive = value
|
2009 | 1 | tkerber | #self._dacapo_is_running = False
|
2010 | 1 | tkerber | else:
|
2011 | 1 | tkerber | log.debug("stay_alive must be boolean. Value was not changed.")
|
2012 | 1 | tkerber | |
2013 | 1 | tkerber | def get_stay_alive(self): |
2014 | 1 | tkerber | 'return the stay alive settings'
|
2015 | 1 | tkerber | |
2016 | 1 | tkerber | return self.stay_alive |
2017 | 1 | tkerber | |
2018 | 1 | tkerber | def get_fftgrid(self): |
2019 | 1 | tkerber | 'return soft and hard fft grids'
|
2020 | 1 | tkerber | |
2021 | 1 | tkerber | nc = netCDF(self.nc, 'r') |
2022 | 1 | tkerber | soft = [] |
2023 | 1 | tkerber | hard = [] |
2024 | 1 | tkerber | for d in [1, 2, 3]: |
2025 | 1 | tkerber | sd = 'softgrid_dim%i' % d
|
2026 | 1 | tkerber | hd = 'hardgrid_dim%i' % d
|
2027 | 1 | tkerber | if sd in nc.dimensions: |
2028 | 1 | tkerber | soft.append(nc.dimensions[sd]) |
2029 | 1 | tkerber | hard.append(nc.dimensions[hd]) |
2030 | 1 | tkerber | nc.close() |
2031 | 1 | tkerber | return ({'soft':soft, |
2032 | 1 | tkerber | 'hard':hard})
|
2033 | 1 | tkerber | |
2034 | 1 | tkerber | def get_kpts_type(self): |
2035 | 1 | tkerber | 'return the kpt grid type'
|
2036 | 1 | tkerber | |
2037 | 1 | tkerber | nc = netCDF(self.nc, 'r') |
2038 | 1 | tkerber | |
2039 | 1 | tkerber | if 'BZKpoints' in nc.variables: |
2040 | 1 | tkerber | bv = nc.variables['BZKpoints']
|
2041 | 1 | tkerber | if hasattr(bv, 'gridtype'): |
2042 | 1 | tkerber | kpts_type = bv.gridtype #string saved in jacapo
|
2043 | 1 | tkerber | else:
|
2044 | 1 | tkerber | #no grid attribute, this ncfile was created pre-jacapo
|
2045 | 1 | tkerber | kpts_type = 'pre-Jacapo: %i kpts' % len(bv[:]) |
2046 | 1 | tkerber | else:
|
2047 | 1 | tkerber | kpts_type = 'BZKpoints not defined. [[0,0,0]] used by default.'
|
2048 | 1 | tkerber | |
2049 | 1 | tkerber | nc.close() |
2050 | 1 | tkerber | return kpts_type
|
2051 | 1 | tkerber | |
2052 | 1 | tkerber | def get_kpts(self): |
2053 | 1 | tkerber | 'return the BZ kpts'
|
2054 | 1 | tkerber | nc = netCDF(self.nc, 'r') |
2055 | 1 | tkerber | |
2056 | 1 | tkerber | if 'BZKpoints' in nc.variables: |
2057 | 1 | tkerber | bv = nc.variables['BZKpoints']
|
2058 | 1 | tkerber | kpts = bv[:] |
2059 | 1 | tkerber | else:
|
2060 | 1 | tkerber | kpts = ([0, 0, 0]) #default Gamma point used in Dacapo when |
2061 | 1 | tkerber | #BZKpoints not defined
|
2062 | 1 | tkerber | |
2063 | 1 | tkerber | nc.close() |
2064 | 1 | tkerber | return kpts
|
2065 | 1 | tkerber | |
2066 | 1 | tkerber | def get_nbands(self): |
2067 | 1 | tkerber | 'return the number of bands used in the calculation'
|
2068 | 1 | tkerber | nc = netCDF(self.nc, 'r') |
2069 | 1 | tkerber | |
2070 | 1 | tkerber | if 'ElectronicBands' in nc.variables: |
2071 | 1 | tkerber | v = nc.variables['ElectronicBands']
|
2072 | 1 | tkerber | if hasattr(v, 'NumberOfBands'): |
2073 | 1 | tkerber | nbands = v.NumberOfBands[0]
|
2074 | 1 | tkerber | else:
|
2075 | 1 | tkerber | nbands = None
|
2076 | 1 | tkerber | else:
|
2077 | 1 | tkerber | nbands = None
|
2078 | 1 | tkerber | |
2079 | 1 | tkerber | nc.close() |
2080 | 1 | tkerber | return nbands
|
2081 | 1 | tkerber | |
2082 | 1 | tkerber | def get_ft(self): |
2083 | 1 | tkerber | 'return the FermiTemperature used in the calculation'
|
2084 | 1 | tkerber | nc = netCDF(self.nc, 'r') |
2085 | 1 | tkerber | |
2086 | 1 | tkerber | if 'ElectronicBands' in nc.variables: |
2087 | 1 | tkerber | v = nc.variables['ElectronicBands']
|
2088 | 1 | tkerber | if hasattr(v, 'OccupationStatistics_FermiTemperature'): |
2089 | 1 | tkerber | ft = v.OccupationStatistics_FermiTemperature |
2090 | 1 | tkerber | else:
|
2091 | 1 | tkerber | ft = None
|
2092 | 1 | tkerber | else:
|
2093 | 1 | tkerber | ft = None
|
2094 | 1 | tkerber | nc.close() |
2095 | 1 | tkerber | return ft
|
2096 | 1 | tkerber | |
2097 | 1 | tkerber | def get_dipole(self): |
2098 | 1 | tkerber | 'return dictionary of parameters if the DipoleCorrection was used'
|
2099 | 1 | tkerber | |
2100 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
2101 | 1 | tkerber | pars = {} |
2102 | 1 | tkerber | if 'DipoleCorrection' in nc.variables: |
2103 | 1 | tkerber | v = nc.variables['DipoleCorrection']
|
2104 | 1 | tkerber | pars['status'] = True |
2105 | 1 | tkerber | if hasattr(v, 'MixingParameter'): |
2106 | 1 | tkerber | pars['mixpar'] = v.MixingParameter
|
2107 | 1 | tkerber | if hasattr(v, 'InitialValue'): |
2108 | 1 | tkerber | pars['initval'] = v.InitialValue
|
2109 | 1 | tkerber | if hasattr(v, 'AdditiveDipoleField'): |
2110 | 1 | tkerber | pars['adddipfield'] = v.AdditiveDipoleField
|
2111 | 1 | tkerber | if hasattr(v, 'DipoleLayerPosition'): |
2112 | 1 | tkerber | pars['position'] = v.DipoleLayerPosition
|
2113 | 1 | tkerber | |
2114 | 1 | tkerber | else:
|
2115 | 1 | tkerber | pars = False
|
2116 | 1 | tkerber | nc.close() |
2117 | 1 | tkerber | return pars
|
2118 | 1 | tkerber | |
2119 | 1 | tkerber | def get_pw(self): |
2120 | 1 | tkerber | 'return the planewave cutoff used'
|
2121 | 1 | tkerber | |
2122 | 1 | tkerber | ncf = netCDF(self.nc, 'r') |
2123 | 1 | tkerber | if 'PlaneWaveCutoff' in ncf.variables: |
2124 | 1 | tkerber | pw = ncf.variables['PlaneWaveCutoff'].getValue()
|
2125 | 1 | tkerber | else:
|
2126 | 1 | tkerber | pw = None
|
2127 | 1 | tkerber | ncf.close() |
2128 | 1 | tkerber | |
2129 | 1 | tkerber | if isinstance(pw, int) or isinstance(pw, float): |
2130 | 1 | tkerber | return pw
|
2131 | 1 | tkerber | elif pw is None: |
2132 | 1 | tkerber | return None |
2133 | 1 | tkerber | else:
|
2134 | 1 | tkerber | return pw[0] |
2135 | 1 | tkerber | |
2136 | 1 | tkerber | def get_dw(self): |
2137 | 1 | tkerber | 'return the density wave cutoff'
|
2138 | 1 | tkerber | |
2139 | 1 | tkerber | ncf = netCDF(self.nc, 'r') |
2140 | 1 | tkerber | if 'Density_WaveCutoff' in ncf.variables: |
2141 | 1 | tkerber | dw = ncf.variables['Density_WaveCutoff'].getValue()
|
2142 | 1 | tkerber | else:
|
2143 | 1 | tkerber | dw = None
|
2144 | 1 | tkerber | ncf.close() |
2145 | 1 | tkerber | |
2146 | 1 | tkerber | #some old calculations apparently store ints, while newer ones
|
2147 | 1 | tkerber | #are lists
|
2148 | 1 | tkerber | if isinstance(dw, int) or isinstance(dw, float): |
2149 | 1 | tkerber | return dw
|
2150 | 1 | tkerber | else:
|
2151 | 1 | tkerber | if dw is None: |
2152 | 1 | tkerber | return None |
2153 | 1 | tkerber | else:
|
2154 | 1 | tkerber | return dw[0] |
2155 | 1 | tkerber | |
2156 | 1 | tkerber | def get_xc(self): |
2157 | 1 | tkerber | '''return the self-consistent exchange-correlation functional used
|
2158 | 1 | tkerber |
|
2159 | 1 | tkerber | returns a string'''
|
2160 | 1 | tkerber | |
2161 | 1 | tkerber | nc = netCDF(self.nc, 'r') |
2162 | 1 | tkerber | v = 'ExcFunctional'
|
2163 | 1 | tkerber | if v in nc.variables: |
2164 | 1 | tkerber | xc = nc.variables[v][:].tostring().strip() |
2165 | 1 | tkerber | else:
|
2166 | 1 | tkerber | xc = None
|
2167 | 1 | tkerber | |
2168 | 1 | tkerber | nc.close() |
2169 | 1 | tkerber | return xc
|
2170 | 1 | tkerber | |
2171 | 1 | tkerber | def get_potential_energy(self, |
2172 | 1 | tkerber | atoms=None,
|
2173 | 1 | tkerber | force_consistent=False):
|
2174 | 1 | tkerber | '''
|
2175 | 1 | tkerber | return the potential energy.
|
2176 | 1 | tkerber | '''
|
2177 | 1 | tkerber | |
2178 | 1 | tkerber | if self.calculation_required(atoms): |
2179 | 1 | tkerber | log.debug('calculation required for energy')
|
2180 | 1 | tkerber | self.calculate()
|
2181 | 1 | tkerber | else:
|
2182 | 1 | tkerber | log.debug('no calculation required for energy')
|
2183 | 1 | tkerber | |
2184 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
2185 | 1 | tkerber | try:
|
2186 | 1 | tkerber | if force_consistent:
|
2187 | 1 | tkerber | e = nc.variables['TotalFreeEnergy'][-1] |
2188 | 1 | tkerber | else:
|
2189 | 1 | tkerber | e = nc.variables['TotalEnergy'][-1] |
2190 | 1 | tkerber | nc.close() |
2191 | 1 | tkerber | return e
|
2192 | 1 | tkerber | except (TypeError, KeyError): |
2193 | 1 | tkerber | raise RuntimeError('Error in calculating the total energy\n' + |
2194 | 1 | tkerber | 'Check ascii out file for error messages')
|
2195 | 1 | tkerber | |
2196 | 1 | tkerber | def get_forces(self, atoms=None): |
2197 | 1 | tkerber | """Calculate atomic forces"""
|
2198 | 1 | tkerber | |
2199 | 1 | tkerber | if atoms is None: |
2200 | 1 | tkerber | atoms = self.atoms
|
2201 | 1 | tkerber | if self.calculation_required(atoms): |
2202 | 1 | tkerber | self.calculate()
|
2203 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
2204 | 1 | tkerber | forces = nc.variables['DynamicAtomForces'][-1] |
2205 | 1 | tkerber | nc.close() |
2206 | 1 | tkerber | return forces
|
2207 | 1 | tkerber | |
2208 | 1 | tkerber | def get_atoms(self): |
2209 | 1 | tkerber | 'return the atoms attached to a calculator()'
|
2210 | 1 | tkerber | |
2211 | 1 | tkerber | if hasattr(self, 'atoms'): |
2212 | 1 | tkerber | if self.atoms is None: |
2213 | 1 | tkerber | return None |
2214 | 1 | tkerber | atoms = self.atoms.copy()
|
2215 | 1 | tkerber | #it is not obvious the copy of atoms should have teh same
|
2216 | 1 | tkerber | #calculator
|
2217 | 1 | tkerber | atoms.set_calculator(self)
|
2218 | 1 | tkerber | else:
|
2219 | 1 | tkerber | atoms = None
|
2220 | 1 | tkerber | return atoms
|
2221 | 1 | tkerber | |
2222 | 1 | tkerber | def get_nc(self): |
2223 | 1 | tkerber | 'return the ncfile used for output'
|
2224 | 1 | tkerber | |
2225 | 1 | tkerber | return self.nc |
2226 | 1 | tkerber | |
2227 | 1 | tkerber | def get_txt(self): |
2228 | 1 | tkerber | 'return the txt file used for output'
|
2229 | 1 | tkerber | |
2230 | 1 | tkerber | if hasattr(self,'txt'): |
2231 | 1 | tkerber | return self.txt |
2232 | 1 | tkerber | else:
|
2233 | 1 | tkerber | return None |
2234 | 1 | tkerber | |
2235 | 1 | tkerber | def get_psp(self, sym=None, z=None): |
2236 | 1 | tkerber | '''get the pseudopotential filename from the psp database
|
2237 | 1 | tkerber |
|
2238 | 1 | tkerber | :Parameters:
|
2239 | 1 | tkerber |
|
2240 | 1 | tkerber | sym : string
|
2241 | 1 | tkerber | the chemical symbol of the species
|
2242 | 1 | tkerber |
|
2243 | 1 | tkerber | z : integer
|
2244 | 1 | tkerber | the atomic number of the species
|
2245 | 1 | tkerber |
|
2246 | 1 | tkerber |
|
2247 | 1 | tkerber | you can only specify sym or z. Returns the pseudopotential
|
2248 | 1 | tkerber | filename, not the full path.
|
2249 | 1 | tkerber | '''
|
2250 | 1 | tkerber | |
2251 | 1 | tkerber | if (sym is None and z is not None): |
2252 | 1 | tkerber | from ase.data import chemical_symbols |
2253 | 1 | tkerber | sym = chemical_symbols[z] |
2254 | 1 | tkerber | elif (sym is not None and z is None): |
2255 | 1 | tkerber | pass
|
2256 | 1 | tkerber | else:
|
2257 | 1 | tkerber | raise Exception, 'You can only specify Z or sym!' |
2258 | 1 | tkerber | psp = self.psp[sym]
|
2259 | 1 | tkerber | return psp
|
2260 | 1 | tkerber | |
2261 | 1 | tkerber | def get_spin_polarized(self): |
2262 | 1 | tkerber | 'Return True if calculate is spin-polarized or False if not'
|
2263 | 1 | tkerber | |
2264 | 1 | tkerber | #self.calculate() #causes recursion error with get_magnetic_moments
|
2265 | 1 | tkerber | nc = netCDF(self.nc, 'r') |
2266 | 1 | tkerber | if 'ElectronicBands' in nc.variables: |
2267 | 1 | tkerber | v = nc.variables['ElectronicBands']
|
2268 | 1 | tkerber | if hasattr(v, 'SpinPolarization'): |
2269 | 1 | tkerber | if v.SpinPolarization == 1: |
2270 | 1 | tkerber | spinpol = False
|
2271 | 1 | tkerber | elif v.SpinPolarization == 2: |
2272 | 1 | tkerber | spinpol = True
|
2273 | 1 | tkerber | else:
|
2274 | 1 | tkerber | spinpol = False
|
2275 | 1 | tkerber | else:
|
2276 | 1 | tkerber | spinpol = 'Not defined'
|
2277 | 1 | tkerber | |
2278 | 1 | tkerber | nc.close() |
2279 | 1 | tkerber | return spinpol
|
2280 | 1 | tkerber | |
2281 | 1 | tkerber | def get_magnetic_moments(self, atoms=None): |
2282 | 1 | tkerber | '''return magnetic moments on each atom after the calculation is
|
2283 | 1 | tkerber | run'''
|
2284 | 1 | tkerber | |
2285 | 1 | tkerber | if self.calculation_required(atoms): |
2286 | 1 | tkerber | self.calculate()
|
2287 | 1 | tkerber | nc = netCDF(self.nc, 'r') |
2288 | 1 | tkerber | if 'InitialAtomicMagneticMoment' in nc.variables: |
2289 | 1 | tkerber | mom = nc.variables['InitialAtomicMagneticMoment'][:]
|
2290 | 1 | tkerber | else:
|
2291 | 1 | tkerber | mom = [0.0]*len(self.atoms) |
2292 | 1 | tkerber | |
2293 | 1 | tkerber | nc.close() |
2294 | 1 | tkerber | return mom
|
2295 | 1 | tkerber | |
2296 | 1 | tkerber | def get_status(self): |
2297 | 1 | tkerber | '''get status of calculation from ncfile. usually one of:
|
2298 | 1 | tkerber | 'new',
|
2299 | 1 | tkerber | 'aborted'
|
2300 | 1 | tkerber | 'running'
|
2301 | 1 | tkerber | 'finished'
|
2302 | 1 | tkerber | None
|
2303 | 1 | tkerber | '''
|
2304 | 1 | tkerber | |
2305 | 1 | tkerber | nc = netCDF(self.nc, 'r') |
2306 | 1 | tkerber | if hasattr(nc, 'status'): |
2307 | 1 | tkerber | status = nc.status |
2308 | 1 | tkerber | else:
|
2309 | 1 | tkerber | status = None
|
2310 | 1 | tkerber | nc.close() |
2311 | 1 | tkerber | return status
|
2312 | 1 | tkerber | |
2313 | 1 | tkerber | def get_calculate_stress(self): |
2314 | 1 | tkerber | 'return whether stress is calculated or not'
|
2315 | 1 | tkerber | |
2316 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
2317 | 1 | tkerber | if 'TotalStress' in nc.variables: |
2318 | 1 | tkerber | calcstress = True
|
2319 | 1 | tkerber | else:
|
2320 | 1 | tkerber | calcstress = False
|
2321 | 1 | tkerber | nc.close() |
2322 | 1 | tkerber | return calcstress
|
2323 | 1 | tkerber | |
2324 | 1 | tkerber | def get_stress(self, atoms=None): |
2325 | 1 | tkerber | '''get stress on the atoms.
|
2326 | 1 | tkerber |
|
2327 | 1 | tkerber | you should have set up the calculation
|
2328 | 1 | tkerber | to calculate stress first.
|
2329 | 1 | tkerber |
|
2330 | 1 | tkerber | returns [sxx, syy, szz, syz, sxz, sxy]'''
|
2331 | 1 | tkerber | |
2332 | 1 | tkerber | if self.calculation_required(atoms): |
2333 | 1 | tkerber | self.calculate()
|
2334 | 1 | tkerber | |
2335 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
2336 | 1 | tkerber | if 'TotalStress' in nc.variables: |
2337 | 1 | tkerber | stress = nc.variables['TotalStress'][:]
|
2338 | 1 | tkerber | #ase expects the 6-element form
|
2339 | 1 | tkerber | stress = np.take(stress.ravel(), [0, 4, 8, 5, 2, 1]) |
2340 | 1 | tkerber | else:
|
2341 | 1 | tkerber | #stress will not be here if you did not set it up by
|
2342 | 1 | tkerber | #calling set_stress() or in the __init__
|
2343 | 1 | tkerber | stress = None
|
2344 | 1 | tkerber | |
2345 | 1 | tkerber | nc.close() |
2346 | 1 | tkerber | |
2347 | 1 | tkerber | return stress
|
2348 | 1 | tkerber | |
2349 | 1 | tkerber | def get_psp_valence(self, psp): |
2350 | 1 | tkerber | '''
|
2351 | 1 | tkerber | get the psp valence charge on an atom from the pspfile.
|
2352 | 1 | tkerber | '''
|
2353 | 1 | tkerber | |
2354 | 1 | tkerber | from struct import unpack |
2355 | 1 | tkerber | dacapopath = os.environ.get('DACAPOPATH')
|
2356 | 1 | tkerber | |
2357 | 1 | tkerber | if os.path.exists(psp):
|
2358 | 1 | tkerber | #the pspfile may be in the current directory
|
2359 | 1 | tkerber | #or defined by an absolute path
|
2360 | 1 | tkerber | fullpsp = psp |
2361 | 1 | tkerber | else:
|
2362 | 1 | tkerber | #or, it is in the default psp path
|
2363 | 1 | tkerber | fullpsp = os.path.join(dacapopath, psp) |
2364 | 1 | tkerber | |
2365 | 1 | tkerber | if os.path.exists(fullpsp.strip()):
|
2366 | 1 | tkerber | f = open(fullpsp)
|
2367 | 1 | tkerber | # read past version numbers and text information
|
2368 | 1 | tkerber | buf = f.read(64)
|
2369 | 1 | tkerber | # read number valence electrons
|
2370 | 1 | tkerber | buf = f.read(8)
|
2371 | 1 | tkerber | fmt = ">d"
|
2372 | 1 | tkerber | nvalence = unpack(fmt, buf)[0]
|
2373 | 1 | tkerber | f.close() |
2374 | 1 | tkerber | |
2375 | 1 | tkerber | else:
|
2376 | 1 | tkerber | raise Exception, "%s does not exist" % fullpsp |
2377 | 1 | tkerber | |
2378 | 1 | tkerber | return nvalence
|
2379 | 1 | tkerber | |
2380 | 1 | tkerber | def get_psp_nuclear_charge(self, psp): |
2381 | 1 | tkerber | '''
|
2382 | 1 | tkerber | get the nuclear charge of the atom from teh psp-file.
|
2383 | 1 | tkerber |
|
2384 | 1 | tkerber | This is not the same as the atomic number, nor is it
|
2385 | 1 | tkerber | necessarily the negative of the number of valence electrons,
|
2386 | 1 | tkerber | since a psp may be an ion. this function is needed to compute
|
2387 | 1 | tkerber | centers of ion charge for the dipole moment calculation.
|
2388 | 1 | tkerber |
|
2389 | 1 | tkerber | We read in the valence ion configuration from the psp file and
|
2390 | 1 | tkerber | add up the charges in each shell.
|
2391 | 1 | tkerber | '''
|
2392 | 1 | tkerber | |
2393 | 1 | tkerber | from struct import unpack |
2394 | 1 | tkerber | dacapopath = os.environ.get('DACAPOPATH')
|
2395 | 1 | tkerber | |
2396 | 1 | tkerber | if os.path.exists(psp):
|
2397 | 1 | tkerber | #the pspfile may be in the current directory
|
2398 | 1 | tkerber | #or defined by an absolute path
|
2399 | 1 | tkerber | fullpsp = psp |
2400 | 1 | tkerber | |
2401 | 1 | tkerber | else:
|
2402 | 1 | tkerber | #or, it is in the default psp path
|
2403 | 1 | tkerber | fullpsp = os.path.join(dacapopath, psp) |
2404 | 1 | tkerber | |
2405 | 1 | tkerber | if os.path.exists(fullpsp.strip()):
|
2406 | 1 | tkerber | f = open(fullpsp)
|
2407 | 1 | tkerber | unpack('>i', f.read(4))[0] |
2408 | 1 | tkerber | for i in range(3): |
2409 | 1 | tkerber | f.read(4)
|
2410 | 1 | tkerber | for i in range(3): |
2411 | 1 | tkerber | f.read(4)
|
2412 | 1 | tkerber | f.read(8)
|
2413 | 1 | tkerber | f.read(20)
|
2414 | 1 | tkerber | f.read(8)
|
2415 | 1 | tkerber | f.read(8)
|
2416 | 1 | tkerber | f.read(8)
|
2417 | 1 | tkerber | nvalps = unpack('>i', f.read(4))[0] |
2418 | 1 | tkerber | f.read(4)
|
2419 | 1 | tkerber | f.read(8)
|
2420 | 1 | tkerber | f.read(8)
|
2421 | 1 | tkerber | wwnlps = [] |
2422 | 1 | tkerber | for i in range(nvalps): |
2423 | 1 | tkerber | f.read(4)
|
2424 | 1 | tkerber | wwnlps.append(unpack('>d', f.read(8))[0]) |
2425 | 1 | tkerber | f.read(8)
|
2426 | 1 | tkerber | f.close() |
2427 | 1 | tkerber | |
2428 | 1 | tkerber | else:
|
2429 | 1 | tkerber | raise Exception, "%s does not exist" % fullpsp |
2430 | 1 | tkerber | |
2431 | 1 | tkerber | return np.array(wwnlps).sum()
|
2432 | 1 | tkerber | |
2433 | 1 | tkerber | def get_valence(self, atoms=None): |
2434 | 1 | tkerber | '''return the total number of valence electrons for the
|
2435 | 1 | tkerber | atoms. valence electrons are read directly from the
|
2436 | 1 | tkerber | pseudopotentials.
|
2437 | 1 | tkerber |
|
2438 | 1 | tkerber | the psp filenames are stored in the ncfile. They may be just
|
2439 | 1 | tkerber | the name of the file, in which case the psp may exist in the
|
2440 | 1 | tkerber | same directory as the ncfile, or in $DACAPOPATH, or the psp
|
2441 | 1 | tkerber | may be defined by an absolute or relative path. This function
|
2442 | 1 | tkerber | deals with all these possibilities.
|
2443 | 1 | tkerber | '''
|
2444 | 1 | tkerber | |
2445 | 1 | tkerber | from struct import unpack |
2446 | 1 | tkerber | |
2447 | 1 | tkerber | #do not use get_atoms() or recursion occurs
|
2448 | 1 | tkerber | if atoms is None: |
2449 | 1 | tkerber | if hasattr(self, 'atoms'): |
2450 | 1 | tkerber | atoms = self.atoms
|
2451 | 1 | tkerber | else:
|
2452 | 1 | tkerber | return None |
2453 | 1 | tkerber | |
2454 | 1 | tkerber | dacapopath = os.environ.get('DACAPOPATH')
|
2455 | 1 | tkerber | totval = 0.0
|
2456 | 1 | tkerber | for sym in atoms.get_chemical_symbols(): |
2457 | 1 | tkerber | psp = self.get_psp(sym)
|
2458 | 1 | tkerber | |
2459 | 1 | tkerber | if os.path.exists(psp):
|
2460 | 1 | tkerber | #the pspfile may be in the current directory
|
2461 | 1 | tkerber | #or defined by an absolute path
|
2462 | 1 | tkerber | fullpsp = psp |
2463 | 1 | tkerber | |
2464 | 1 | tkerber | #let's also see if we can construct an absolute path to a
|
2465 | 1 | tkerber | #local or relative path psp.
|
2466 | 1 | tkerber | abs_path_to_nc = os.path.abspath(self.get_nc())
|
2467 | 1 | tkerber | base = os.path.split(abs_path_to_nc)[0]
|
2468 | 1 | tkerber | possible_path_to_psp = os.path.join(base, psp) |
2469 | 1 | tkerber | if os.path.exists(possible_path_to_psp):
|
2470 | 1 | tkerber | fullpsp = possible_path_to_psp |
2471 | 1 | tkerber | |
2472 | 1 | tkerber | else:
|
2473 | 1 | tkerber | #or, it is in the default psp path
|
2474 | 1 | tkerber | fullpsp = os.path.join(dacapopath, psp) |
2475 | 1 | tkerber | if os.path.exists(fullpsp.strip()):
|
2476 | 1 | tkerber | f = open(fullpsp)
|
2477 | 1 | tkerber | # read past version numbers and text information
|
2478 | 1 | tkerber | buf = f.read(64)
|
2479 | 1 | tkerber | # read number valence electrons
|
2480 | 1 | tkerber | buf = f.read(8)
|
2481 | 1 | tkerber | fmt = ">d"
|
2482 | 1 | tkerber | nvalence = unpack(fmt, buf)[0]
|
2483 | 1 | tkerber | f.close() |
2484 | 1 | tkerber | totval += float(nvalence)
|
2485 | 1 | tkerber | else:
|
2486 | 1 | tkerber | raise Exception, "%s does not exist" % fullpsp |
2487 | 1 | tkerber | |
2488 | 1 | tkerber | return totval
|
2489 | 1 | tkerber | |
2490 | 1 | tkerber | def calculation_required(self, atoms=None, quantities=None): |
2491 | 1 | tkerber | '''
|
2492 | 1 | tkerber | determines if a calculation is needed.
|
2493 | 1 | tkerber |
|
2494 | 1 | tkerber | return True if a calculation is needed to get up to date data.
|
2495 | 1 | tkerber | return False if no calculation is needed.
|
2496 | 1 | tkerber |
|
2497 | 1 | tkerber | quantities is here because of the ase interface.
|
2498 | 1 | tkerber | '''
|
2499 | 1 | tkerber | |
2500 | 1 | tkerber | # first, compare if the atoms is the same as the stored atoms
|
2501 | 1 | tkerber | # if anything has changed, we need to run a calculation
|
2502 | 1 | tkerber | log.debug('running calculation_required')
|
2503 | 1 | tkerber | |
2504 | 1 | tkerber | if self.nc is None: |
2505 | 1 | tkerber | raise Exception, 'No output ncfile specified!' |
2506 | 1 | tkerber | |
2507 | 1 | tkerber | if atoms is not None: |
2508 | 1 | tkerber | if not self.atoms_are_equal(atoms): |
2509 | 1 | tkerber | log.debug('found that atoms != self.atoms')
|
2510 | 1 | tkerber | tol = 1.0e-6 #tolerance that the unit cell is the same |
2511 | 1 | tkerber | new = atoms.get_cell() |
2512 | 1 | tkerber | old = self.atoms.get_cell()
|
2513 | 1 | tkerber | #float comparison of equality
|
2514 | 1 | tkerber | if not np.all(abs(old-new) < tol): |
2515 | 1 | tkerber | #this often changes the number of planewaves
|
2516 | 1 | tkerber | #which requires a complete restart
|
2517 | 1 | tkerber | log.debug('restart required! because cell changed')
|
2518 | 1 | tkerber | self.restart()
|
2519 | 1 | tkerber | else:
|
2520 | 1 | tkerber | log.debug('Unitcells apparently the same')
|
2521 | 1 | tkerber | |
2522 | 1 | tkerber | self.set_atoms(atoms) #we have to update the atoms in any case |
2523 | 1 | tkerber | return True |
2524 | 1 | tkerber | |
2525 | 1 | tkerber | #if we make it past the atoms check, we look in the
|
2526 | 1 | tkerber | #nc file. if parameters have been changed the status
|
2527 | 1 | tkerber | #will tell us if a calculation is needed
|
2528 | 1 | tkerber | |
2529 | 1 | tkerber | #past this point, atoms was None or equal, so there is nothing to
|
2530 | 1 | tkerber | #update in the calculator
|
2531 | 1 | tkerber | |
2532 | 1 | tkerber | log.debug('atoms tested equal')
|
2533 | 1 | tkerber | if os.path.exists(self.nc): |
2534 | 1 | tkerber | nc = netCDF(self.nc, 'r') |
2535 | 1 | tkerber | if hasattr(nc, 'status'): |
2536 | 1 | tkerber | if nc.status == 'finished' and self.ready: |
2537 | 1 | tkerber | nc.close() |
2538 | 1 | tkerber | return False |
2539 | 1 | tkerber | elif nc.status == 'running': |
2540 | 1 | tkerber | nc.close() |
2541 | 1 | tkerber | raise DacapoRunning('Dacapo is Running') |
2542 | 1 | tkerber | elif nc.status == 'aborted': |
2543 | 1 | tkerber | nc.close() |
2544 | 1 | tkerber | raise DacapoAborted('Dacapo aborted. see txt file!') |
2545 | 1 | tkerber | else:
|
2546 | 1 | tkerber | log.debug('ncfile exists, but is not ready')
|
2547 | 1 | tkerber | nc.close() |
2548 | 1 | tkerber | return True |
2549 | 1 | tkerber | else:
|
2550 | 1 | tkerber | #legacy calculations do not have a status flag in them.
|
2551 | 1 | tkerber | #let us guess that if the TotalEnergy is there
|
2552 | 1 | tkerber | #no calculation needs to be run?
|
2553 | 1 | tkerber | if 'TotalEnergy' in nc.variables: |
2554 | 1 | tkerber | runflag = False
|
2555 | 1 | tkerber | else:
|
2556 | 1 | tkerber | runflag = True
|
2557 | 1 | tkerber | nc.close() |
2558 | 1 | tkerber | log.debug('Legacy calculation')
|
2559 | 1 | tkerber | return runflag #if no status run calculation |
2560 | 1 | tkerber | nc.close() |
2561 | 1 | tkerber | |
2562 | 1 | tkerber | #default, a calculation is required
|
2563 | 1 | tkerber | return True |
2564 | 1 | tkerber | |
2565 | 1 | tkerber | def get_scratch(self): |
2566 | 1 | tkerber | '''finds an appropriate scratch directory for the calculation'''
|
2567 | 1 | tkerber | |
2568 | 1 | tkerber | import getpass |
2569 | 1 | tkerber | username = getpass.getuser() |
2570 | 1 | tkerber | |
2571 | 1 | tkerber | scratch_dirs = [] |
2572 | 1 | tkerber | if os.environ.has_key('SCRATCH'): |
2573 | 1 | tkerber | scratch_dirs.append(os.environ['SCRATCH'])
|
2574 | 1 | tkerber | if os.environ.has_key('SCR'): |
2575 | 1 | tkerber | scratch_dirs.append(os.environ['SCR'])
|
2576 | 1 | tkerber | scratch_dirs.append('/scratch/'+username)
|
2577 | 1 | tkerber | scratch_dirs.append('/scratch/')
|
2578 | 1 | tkerber | scratch_dirs.append(os.curdir) |
2579 | 1 | tkerber | for scratch_dir in scratch_dirs: |
2580 | 1 | tkerber | if os.access(scratch_dir, os.W_OK):
|
2581 | 1 | tkerber | return scratch_dir
|
2582 | 1 | tkerber | raise IOError, "No suitable scratch directory and no write access \ |
2583 | 1 | tkerber | to current dir."
|
2584 | 1 | tkerber | |
2585 | 1 | tkerber | def calculate(self): |
2586 | 1 | tkerber | '''run a calculation.
|
2587 | 1 | tkerber |
|
2588 | 1 | tkerber | you have to be a little careful with code in here. Use the
|
2589 | 1 | tkerber | calculation_required function to tell if a calculation is
|
2590 | 1 | tkerber | required. It is assumed here that if you call this, you mean
|
2591 | 1 | tkerber | it.'''
|
2592 | 1 | tkerber | |
2593 | 1 | tkerber | #provide a way to make no calculation get run
|
2594 | 1 | tkerber | if os.environ.get('DACAPO_DRYRUN', None) is not None: |
2595 | 1 | tkerber | raise Exception, '$DACAPO_DRYRUN detected, and a calculation \ |
2596 | 1 | tkerber | attempted'
|
2597 | 1 | tkerber | |
2598 | 1 | tkerber | if not self.ready: |
2599 | 1 | tkerber | log.debug('Calculator is not ready.')
|
2600 | 1 | tkerber | if not os.path.exists(self.get_nc()): |
2601 | 1 | tkerber | self.initnc()
|
2602 | 1 | tkerber | |
2603 | 1 | tkerber | log.debug('writing atoms out')
|
2604 | 1 | tkerber | log.debug(self.atoms)
|
2605 | 1 | tkerber | |
2606 | 1 | tkerber | self.write_nc() #write atoms to ncfile |
2607 | 1 | tkerber | |
2608 | 1 | tkerber | log.debug('writing input out')
|
2609 | 1 | tkerber | self.write_input() #make sure input is uptodate |
2610 | 1 | tkerber | |
2611 | 1 | tkerber | |
2612 | 1 | tkerber | #check that the bands get set
|
2613 | 1 | tkerber | if self.get_nbands() is None: |
2614 | 1 | tkerber | nelectrons = self.get_valence()
|
2615 | 1 | tkerber | nbands = int(nelectrons * 0.65 + 4) |
2616 | 1 | tkerber | self.set_nbands(nbands)
|
2617 | 1 | tkerber | |
2618 | 1 | tkerber | log.debug('running a calculation')
|
2619 | 1 | tkerber | |
2620 | 1 | tkerber | nc = self.get_nc()
|
2621 | 1 | tkerber | txt = self.get_txt()
|
2622 | 1 | tkerber | scratch = self.get_scratch()
|
2623 | 1 | tkerber | |
2624 | 1 | tkerber | if self.stay_alive: |
2625 | 1 | tkerber | self.execute_external_dynamics(nc, txt)
|
2626 | 1 | tkerber | self.ready = True |
2627 | 1 | tkerber | self.set_status('finished') |
2628 | 1 | tkerber | else:
|
2629 | 1 | tkerber | cmd = 'dacapo.run %(innc)s -out %(txt)s -scratch %(scratch)s'
|
2630 | 1 | tkerber | cmd = cmd % {'innc':nc,
|
2631 | 1 | tkerber | 'txt':txt,
|
2632 | 1 | tkerber | 'scratch':scratch}
|
2633 | 1 | tkerber | |
2634 | 1 | tkerber | log.debug(cmd) |
2635 | 1 | tkerber | # using subprocess instead of commands subprocess is more
|
2636 | 1 | tkerber | # flexible and works better for stay_alive
|
2637 | 1 | tkerber | self._dacapo = sp.Popen(cmd,
|
2638 | 1 | tkerber | stdout=sp.PIPE, |
2639 | 1 | tkerber | stderr=sp.PIPE, |
2640 | 1 | tkerber | shell=True)
|
2641 | 1 | tkerber | status = self._dacapo.wait()
|
2642 | 1 | tkerber | [stdout, stderr] = self._dacapo.communicate()
|
2643 | 1 | tkerber | output = stdout+stderr |
2644 | 1 | tkerber | |
2645 | 1 | tkerber | if status is 0: #that means it ended fine! |
2646 | 1 | tkerber | self.ready = True |
2647 | 1 | tkerber | self.set_status('finished') |
2648 | 1 | tkerber | else:
|
2649 | 1 | tkerber | log.debug('Status was not 0')
|
2650 | 1 | tkerber | log.debug(output) |
2651 | 1 | tkerber | self.ready = False |
2652 | 1 | tkerber | # directory cleanup has been moved to self.__del__()
|
2653 | 1 | tkerber | del self._dacapo |
2654 | 1 | tkerber | |
2655 | 1 | tkerber | #Sometimes dacapo dies or is killed abnormally, and in this
|
2656 | 1 | tkerber | #case an exception should be raised to prevent a geometry
|
2657 | 1 | tkerber | #optimization from continuing for example. The best way to
|
2658 | 1 | tkerber | #detect this right now is actually to check the end of the
|
2659 | 1 | tkerber | #text file to make sure it ends with the right line. The
|
2660 | 1 | tkerber | #line differs if the job was run in parallel or in serial.
|
2661 | 1 | tkerber | f = open(txt, 'r') |
2662 | 1 | tkerber | lines = f.readlines() |
2663 | 1 | tkerber | f.close() |
2664 | 1 | tkerber | |
2665 | 1 | tkerber | if 'PAR: msexit halting Master' in lines[-1]: |
2666 | 1 | tkerber | pass #standard parallel end |
2667 | 1 | tkerber | elif ('TIM' in lines[-2] |
2668 | 1 | tkerber | and 'clexit: exiting the program' in lines[-1]): |
2669 | 1 | tkerber | pass #standard serial end |
2670 | 1 | tkerber | else:
|
2671 | 1 | tkerber | # text file does not end as expected, print the last
|
2672 | 1 | tkerber | # 10 lines and raise exception
|
2673 | 1 | tkerber | log.debug(string.join(lines[-10:-1], '')) |
2674 | 1 | tkerber | s = 'Dacapo output txtfile (%s) did not end normally.'
|
2675 | 1 | tkerber | raise DacapoAbnormalTermination(s % txt)
|
2676 | 1 | tkerber | |
2677 | 1 | tkerber | def execute_external_dynamics(self, |
2678 | 1 | tkerber | nc=None,
|
2679 | 1 | tkerber | txt=None,
|
2680 | 1 | tkerber | stoppfile='stop',
|
2681 | 1 | tkerber | stopprogram=None):
|
2682 | 1 | tkerber | '''
|
2683 | 1 | tkerber | Implementation of the stay alive functionality with socket
|
2684 | 1 | tkerber | communication between dacapo and python. Known limitations:
|
2685 | 1 | tkerber | It is not possible to start 2 independent Dacapo calculators
|
2686 | 1 | tkerber | from the same python process, since the python PID is used as
|
2687 | 1 | tkerber | identifier for the script[PID].py file.
|
2688 | 1 | tkerber | '''
|
2689 | 1 | tkerber | |
2690 | 1 | tkerber | from socket import socket, AF_INET, SOCK_STREAM, timeout |
2691 | 1 | tkerber | import tempfile |
2692 | 1 | tkerber | |
2693 | 1 | tkerber | if hasattr(self, "_dacapo"): |
2694 | 1 | tkerber | msg = "Starting External Dynamics while Dacapo is runnning: %s"
|
2695 | 1 | tkerber | msg = msg % str(self._dacapo.poll()) |
2696 | 1 | tkerber | log.debug(msg) |
2697 | 1 | tkerber | else:
|
2698 | 1 | tkerber | log.debug("No dacapo instance has been started yet")
|
2699 | 1 | tkerber | log.debug("Stopprogram: %s" % stopprogram)
|
2700 | 1 | tkerber | |
2701 | 1 | tkerber | if not nc: |
2702 | 1 | tkerber | nc = self.get_nc()
|
2703 | 1 | tkerber | if not txt: |
2704 | 1 | tkerber | txt = self.get_txt()
|
2705 | 1 | tkerber | tempfile.tempdir = os.curdir |
2706 | 1 | tkerber | |
2707 | 1 | tkerber | if stopprogram:
|
2708 | 1 | tkerber | # write stop file
|
2709 | 1 | tkerber | stfile = open(stoppfile, 'w') |
2710 | 1 | tkerber | stfile.write('1 \n')
|
2711 | 1 | tkerber | stfile.close() |
2712 | 1 | tkerber | |
2713 | 1 | tkerber | # signal to dacapo that positions are ready
|
2714 | 1 | tkerber | # let dacapo continue, it is up to the python mainloop
|
2715 | 1 | tkerber | # to allow dacapo enough time to finish properly.
|
2716 | 1 | tkerber | self._client.send('ok too proceed') |
2717 | 1 | tkerber | |
2718 | 1 | tkerber | # Wait for dacapo to acknowledge that netcdf file has
|
2719 | 1 | tkerber | # been updated, and analysis part of the code has been
|
2720 | 1 | tkerber | # terminated. Dacapo sends a signal at the end of call
|
2721 | 1 | tkerber | # clexit().
|
2722 | 1 | tkerber | log.info("waiting for dacapo to exit...")
|
2723 | 1 | tkerber | self.s.settimeout(1200.0) # if dacapo exits with an |
2724 | 1 | tkerber | # error, self.s.accept()
|
2725 | 1 | tkerber | # should time out,
|
2726 | 1 | tkerber | # but we need to give it
|
2727 | 1 | tkerber | # enough time to write the
|
2728 | 1 | tkerber | # wave function to the nc
|
2729 | 1 | tkerber | # file.
|
2730 | 1 | tkerber | try:
|
2731 | 1 | tkerber | self._client, self._addr = self.s.accept() # Last |
2732 | 1 | tkerber | # mumble
|
2733 | 1 | tkerber | # before
|
2734 | 1 | tkerber | # Dacapo
|
2735 | 1 | tkerber | # dies.
|
2736 | 1 | tkerber | os.system("sleep 5") # 5 seconds of silence |
2737 | 1 | tkerber | # mourning
|
2738 | 1 | tkerber | # dacapo.
|
2739 | 1 | tkerber | except timeout:
|
2740 | 1 | tkerber | print '''Socket connection timed out.''' |
2741 | 1 | tkerber | print '''This usually means Dacapo crashed.''' |
2742 | 1 | tkerber | |
2743 | 1 | tkerber | # close the socket s
|
2744 | 1 | tkerber | self.s.close()
|
2745 | 1 | tkerber | self._client.close()
|
2746 | 1 | tkerber | |
2747 | 1 | tkerber | # remove the script???? file
|
2748 | 1 | tkerber | ncfile = netCDF(nc, 'r')
|
2749 | 1 | tkerber | vdyn = ncfile.variables['Dynamics']
|
2750 | 1 | tkerber | os.system('rm -f '+vdyn.ExternalIonMotion_script)
|
2751 | 1 | tkerber | ncfile.close() |
2752 | 1 | tkerber | os.system('rm -f '+stoppfile)
|
2753 | 1 | tkerber | |
2754 | 1 | tkerber | if self._dacapo.poll()==None: # dacapo is still not dead! |
2755 | 1 | tkerber | # but this should do it!
|
2756 | 1 | tkerber | sp.Popen("kill -9 "+str(self._dacapo.pid), shell=True) |
2757 | 1 | tkerber | #if Dacapo dies for example because of too few
|
2758 | 1 | tkerber | #bands, subprocess never returns an exitcode.
|
2759 | 1 | tkerber | #very strange, but at least the program is
|
2760 | 1 | tkerber | #terminated. print self._dacapo.returncode
|
2761 | 1 | tkerber | del self._dacapo |
2762 | 1 | tkerber | return
|
2763 | 1 | tkerber | |
2764 | 1 | tkerber | if hasattr(self, '_dacapo') and self._dacapo.poll()==None: |
2765 | 1 | tkerber | # returns None if dacapo is running self._dacapo_is_running:
|
2766 | 1 | tkerber | |
2767 | 1 | tkerber | # calculation_required already updated the positions in
|
2768 | 1 | tkerber | # the nc file
|
2769 | 1 | tkerber | self._client.send('ok too proceed') |
2770 | 1 | tkerber | |
2771 | 1 | tkerber | else:
|
2772 | 1 | tkerber | |
2773 | 1 | tkerber | # get process pid that will be used as communication
|
2774 | 1 | tkerber | # channel
|
2775 | 1 | tkerber | pid = os.getpid() |
2776 | 1 | tkerber | |
2777 | 1 | tkerber | # setup communication channel to dacapo
|
2778 | 1 | tkerber | from sys import version |
2779 | 1 | tkerber | from string import split |
2780 | 1 | tkerber | effpid = (pid)%(2**16-1025)+1025 # This translate pid |
2781 | 1 | tkerber | # [0;99999] to a number
|
2782 | 1 | tkerber | # in [1025;65535] (the
|
2783 | 1 | tkerber | # allowed socket
|
2784 | 1 | tkerber | # numbers)
|
2785 | 1 | tkerber | |
2786 | 1 | tkerber | self.s = socket(AF_INET, SOCK_STREAM)
|
2787 | 1 | tkerber | foundafreesocket = 0
|
2788 | 1 | tkerber | while not foundafreesocket: |
2789 | 1 | tkerber | try:
|
2790 | 1 | tkerber | if split(version)[0] > "2": # new interface |
2791 | 1 | tkerber | self.s.bind(("", effpid)) |
2792 | 1 | tkerber | else: # old interface |
2793 | 1 | tkerber | self.s.bind("", effpid) |
2794 | 1 | tkerber | foundafreesocket = 1
|
2795 | 1 | tkerber | except:
|
2796 | 1 | tkerber | effpid = effpid + 1
|
2797 | 1 | tkerber | |
2798 | 1 | tkerber | # write script file that will be used by dacapo
|
2799 | 1 | tkerber | scriptname = 'script%s.py' % str(pid) |
2800 | 1 | tkerber | scriptfile = open(scriptname, 'w') |
2801 | 1 | tkerber | scriptfile.write( |
2802 | 1 | tkerber | """#!/usr/bin/env python
|
2803 | 1 | tkerber | from socket import *
|
2804 | 1 | tkerber | from sys import version
|
2805 | 1 | tkerber | from string import split
|
2806 | 1 | tkerber | s = socket(AF_INET,SOCK_STREAM)
|
2807 | 1 | tkerber | # tell python that dacapo has finished
|
2808 | 1 | tkerber | if split(version)[0] > "2": # new interface
|
2809 | 1 | tkerber | s.connect(("",%(effpid)s))
|
2810 | 1 | tkerber | else: # old interface
|
2811 | 1 | tkerber | s.connect("",%(effpid)s)
|
2812 | 1 | tkerber | # wait for python main loop
|
2813 | 1 | tkerber | s.recv(14)
|
2814 | 1 | tkerber | """ % {'effpid':str(effpid)}) |
2815 | 1 | tkerber | scriptfile.close() |
2816 | 1 | tkerber | os.system('chmod +x ' + scriptname)
|
2817 | 1 | tkerber | |
2818 | 1 | tkerber | # setup dynamics as external and set the script name
|
2819 | 1 | tkerber | ncfile = netCDF(nc, 'a')
|
2820 | 1 | tkerber | if 'Dynamics' not in ncfile.variables: |
2821 | 1 | tkerber | vdyn = ncfile.createVariable('Dynamics', 'c', ()) |
2822 | 1 | tkerber | else:
|
2823 | 1 | tkerber | vdyn = ncfile.variables['Dynamics']
|
2824 | 1 | tkerber | vdyn.Type = "ExternalIonMotion"
|
2825 | 1 | tkerber | vdyn.ExternalIonMotion_script = './'+ scriptname
|
2826 | 1 | tkerber | ncfile.close() |
2827 | 1 | tkerber | |
2828 | 1 | tkerber | # dacapo is not running start dacapo non blocking
|
2829 | 1 | tkerber | scratch_in_nc = tempfile.mktemp() |
2830 | 1 | tkerber | os.system('mv '+nc+' '+scratch_in_nc) |
2831 | 1 | tkerber | os.system('rm -f '+stoppfile)
|
2832 | 1 | tkerber | scratch = self.get_scratch()
|
2833 | 1 | tkerber | cmd = 'dacapo.run'
|
2834 | 1 | tkerber | cmd += ' %(innc)s %(outnc)s -out %(txt)s -scratch %(scratch)s'
|
2835 | 1 | tkerber | cmd = cmd % {'innc':scratch_in_nc,
|
2836 | 1 | tkerber | 'outnc':nc,
|
2837 | 1 | tkerber | 'txt':txt,
|
2838 | 1 | tkerber | 'scratch':scratch}
|
2839 | 1 | tkerber | |
2840 | 1 | tkerber | log.debug(cmd) |
2841 | 1 | tkerber | self._dacapo = sp.Popen(cmd,
|
2842 | 1 | tkerber | stdout=sp.PIPE, |
2843 | 1 | tkerber | stderr=sp.PIPE, |
2844 | 1 | tkerber | shell=True)
|
2845 | 1 | tkerber | |
2846 | 1 | tkerber | self.s.listen(1) |
2847 | 1 | tkerber | |
2848 | 1 | tkerber | # wait for dacapo
|
2849 | 1 | tkerber | self._client, self._addr = self.s.accept() |
2850 | 1 | tkerber | |
2851 | 1 | tkerber | def write_nc(self, nc=None, atoms=None): |
2852 | 1 | tkerber | '''
|
2853 | 1 | tkerber | write out atoms to a netcdffile.
|
2854 | 1 | tkerber |
|
2855 | 1 | tkerber | This does not write out the calculation parameters!
|
2856 | 1 | tkerber |
|
2857 | 1 | tkerber | :Parameters:
|
2858 | 1 | tkerber |
|
2859 | 1 | tkerber | nc : string
|
2860 | 1 | tkerber | ncfilename to write to. this file will get clobbered
|
2861 | 1 | tkerber | if it already exists.
|
2862 | 1 | tkerber |
|
2863 | 1 | tkerber | atoms : ASE.Atoms
|
2864 | 1 | tkerber | atoms to write. if None use the attached atoms
|
2865 | 1 | tkerber | if no atoms are attached only the calculator is
|
2866 | 1 | tkerber | written out.
|
2867 | 1 | tkerber |
|
2868 | 1 | tkerber | the ncfile is always opened in 'a' mode.
|
2869 | 1 | tkerber |
|
2870 | 1 | tkerber | note: it is good practice to use the atoms argument to make
|
2871 | 1 | tkerber | sure that the geometry you mean gets written! Otherwise, the
|
2872 | 1 | tkerber | atoms in the calculator is used, which may be different than
|
2873 | 1 | tkerber | the external copy of the atoms.
|
2874 | 1 | tkerber |
|
2875 | 1 | tkerber | '''
|
2876 | 1 | tkerber | |
2877 | 1 | tkerber | log.debug('writing atoms to ncfile')
|
2878 | 1 | tkerber | #no filename was provided to function, use the current ncfile
|
2879 | 1 | tkerber | if nc is None: |
2880 | 1 | tkerber | nc = self.get_nc()
|
2881 | 1 | tkerber | |
2882 | 1 | tkerber | if nc != self.nc: |
2883 | 1 | tkerber | #this means we are writing a new file, and we should copy
|
2884 | 1 | tkerber | #the old file to it first. this makes sure the old
|
2885 | 1 | tkerber | #calculator settings are preserved
|
2886 | 1 | tkerber | new = nc |
2887 | 1 | tkerber | old = self.nc
|
2888 | 1 | tkerber | log.debug('Copying old ncfile to new ncfile')
|
2889 | 1 | tkerber | log.debug('cp %s %s' % (old, new))
|
2890 | 1 | tkerber | os.system('cp %s %s' % (old, new))
|
2891 | 1 | tkerber | |
2892 | 1 | tkerber | if atoms is None: |
2893 | 1 | tkerber | atoms = self.get_atoms()
|
2894 | 1 | tkerber | |
2895 | 1 | tkerber | log.debug('self.atoms = %s' % str(self.atoms)) |
2896 | 1 | tkerber | log.debug('atoms = %s' % str(atoms)) |
2897 | 1 | tkerber | |
2898 | 1 | tkerber | if atoms is not None: #there may still be no atoms attached |
2899 | 1 | tkerber | log.debug('about to write to %s' % nc)
|
2900 | 1 | tkerber | ncf = netCDF(nc, 'a')
|
2901 | 1 | tkerber | |
2902 | 1 | tkerber | if 'number_of_dynamic_atoms' not in ncf.dimensions: |
2903 | 1 | tkerber | ncf.createDimension('number_of_dynamic_atoms',
|
2904 | 1 | tkerber | len(atoms))
|
2905 | 1 | tkerber | else:
|
2906 | 1 | tkerber | # number of atoms is already a dimension, but we might
|
2907 | 1 | tkerber | # be setting new atoms here
|
2908 | 1 | tkerber | # check for same atom symbols (implicitly includes
|
2909 | 1 | tkerber | # a length check)
|
2910 | 1 | tkerber | symbols = np.array(['%2s' % s for s in |
2911 | 1 | tkerber | atoms.get_chemical_symbols()], dtype='c')
|
2912 | 1 | tkerber | ncsym = ncf.variables['DynamicAtomSpecies'][:]
|
2913 | 1 | tkerber | if (symbols.size != ncsym.size) or (np.any(ncsym != symbols)): |
2914 | 1 | tkerber | # the number of atoms or their order has changed.
|
2915 | 1 | tkerber | # Treat this as a new calculation and reset
|
2916 | 1 | tkerber | # number_of_ionic_steps and
|
2917 | 1 | tkerber | # number_of_dynamic_atoms.
|
2918 | 1 | tkerber | ncf.close() #nc file must be closed for
|
2919 | 1 | tkerber | #delete_ncattdimvar to work correctly
|
2920 | 1 | tkerber | self.delete_ncattdimvar(nc, ncattrs=[],
|
2921 | 1 | tkerber | ncdims=['number_of_dynamic_atoms',
|
2922 | 1 | tkerber | 'number_ionic_steps'])
|
2923 | 1 | tkerber | ncf = netCDF(nc, 'a')
|
2924 | 1 | tkerber | ncf.createDimension('number_of_dynamic_atoms',
|
2925 | 1 | tkerber | len(atoms))
|
2926 | 1 | tkerber | ncf.createDimension('number_ionic_steps', None) |
2927 | 1 | tkerber | self._set_frame_number(0) |
2928 | 1 | tkerber | ncf.close() #nc file must be closed for restart to
|
2929 | 1 | tkerber | #work correctly
|
2930 | 1 | tkerber | self.restart()
|
2931 | 1 | tkerber | ncf = netCDF(nc, 'a')
|
2932 | 1 | tkerber | |
2933 | 1 | tkerber | #now, create variables
|
2934 | 1 | tkerber | if 'DynamicAtomSpecies' not in ncf.variables: |
2935 | 1 | tkerber | sym = ncf.createVariable('DynamicAtomSpecies',
|
2936 | 1 | tkerber | 'c',
|
2937 | 1 | tkerber | ('number_of_dynamic_atoms',
|
2938 | 1 | tkerber | 'dim2',))
|
2939 | 1 | tkerber | else:
|
2940 | 1 | tkerber | sym = ncf.variables['DynamicAtomSpecies']
|
2941 | 1 | tkerber | |
2942 | 1 | tkerber | #note explicit array casting was required here
|
2943 | 1 | tkerber | symbols = atoms.get_chemical_symbols() |
2944 | 1 | tkerber | sym[:] = np.array(['%2s' % s for s in symbols], dtype='c') |
2945 | 1 | tkerber | |
2946 | 1 | tkerber | if 'DynamicAtomPositions' not in ncf.variables: |
2947 | 1 | tkerber | pos = ncf.createVariable('DynamicAtomPositions',
|
2948 | 1 | tkerber | 'd',
|
2949 | 1 | tkerber | ('number_ionic_steps',
|
2950 | 1 | tkerber | 'number_of_dynamic_atoms',
|
2951 | 1 | tkerber | 'dim3'))
|
2952 | 1 | tkerber | else:
|
2953 | 1 | tkerber | pos = ncf.variables['DynamicAtomPositions']
|
2954 | 1 | tkerber | |
2955 | 1 | tkerber | spos = atoms.get_scaled_positions() |
2956 | 1 | tkerber | if pos.typecode() == 'f': |
2957 | 1 | tkerber | spos = np.array(spos, dtype=np.float32) |
2958 | 1 | tkerber | pos[self._frame, :] = spos
|
2959 | 1 | tkerber | |
2960 | 1 | tkerber | if 'UnitCell' not in ncf.variables: |
2961 | 1 | tkerber | uc = ncf.createVariable('UnitCell', 'd', |
2962 | 1 | tkerber | ('number_ionic_steps',
|
2963 | 1 | tkerber | 'dim3', 'dim3')) |
2964 | 1 | tkerber | else:
|
2965 | 1 | tkerber | uc = ncf.variables['UnitCell']
|
2966 | 1 | tkerber | |
2967 | 1 | tkerber | cell = atoms.get_cell() |
2968 | 1 | tkerber | if uc.typecode() == 'f': |
2969 | 1 | tkerber | cell = np.array(cell, dtype=np.float32) |
2970 | 1 | tkerber | |
2971 | 1 | tkerber | uc[self._frame, :] = cell
|
2972 | 1 | tkerber | |
2973 | 1 | tkerber | if 'AtomTags' not in ncf.variables: |
2974 | 1 | tkerber | tags = ncf.createVariable('AtomTags', 'i', |
2975 | 1 | tkerber | ('number_of_dynamic_atoms',))
|
2976 | 1 | tkerber | else:
|
2977 | 1 | tkerber | tags = ncf.variables['AtomTags']
|
2978 | 1 | tkerber | |
2979 | 1 | tkerber | tags[:] = np.array(atoms.get_tags(), np.int32) |
2980 | 1 | tkerber | |
2981 | 1 | tkerber | if 'InitialAtomicMagneticMoment' not in ncf.variables: |
2982 | 1 | tkerber | mom = ncf.createVariable('InitialAtomicMagneticMoment',
|
2983 | 1 | tkerber | 'd',
|
2984 | 1 | tkerber | ('number_of_dynamic_atoms',))
|
2985 | 1 | tkerber | else:
|
2986 | 1 | tkerber | mom = ncf.variables['InitialAtomicMagneticMoment']
|
2987 | 1 | tkerber | |
2988 | 1 | tkerber | #explain why we have to use get_initial_magnetic_moments()
|
2989 | 1 | tkerber | moms = atoms.get_initial_magnetic_moments() |
2990 | 1 | tkerber | if mom.typecode() == 'f': |
2991 | 1 | tkerber | moms = np.array(moms, dtype=np.float32) |
2992 | 1 | tkerber | mom[:] = moms |
2993 | 1 | tkerber | |
2994 | 1 | tkerber | #finally the atom pseudopotentials
|
2995 | 1 | tkerber | for sym in atoms.get_chemical_symbols(): |
2996 | 1 | tkerber | vn = 'AtomProperty_%s' % sym
|
2997 | 1 | tkerber | if vn not in ncf.variables: |
2998 | 1 | tkerber | p = ncf.createVariable(vn, 'c', ('dim20',)) |
2999 | 1 | tkerber | else:
|
3000 | 1 | tkerber | p = ncf.variables[vn] |
3001 | 1 | tkerber | |
3002 | 1 | tkerber | ppath = self.get_psp(sym=sym)
|
3003 | 1 | tkerber | p.PspotFile = ppath |
3004 | 1 | tkerber | |
3005 | 1 | tkerber | ncf.sync() |
3006 | 1 | tkerber | ncf.close() |
3007 | 1 | tkerber | |
3008 | 1 | tkerber | #store constraints if they exist
|
3009 | 1 | tkerber | constraints = atoms._get_constraints() |
3010 | 1 | tkerber | if constraints != []:
|
3011 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
3012 | 1 | tkerber | if 'constraints' not in nc.variables: |
3013 | 1 | tkerber | if 'dim1' not in nc.dimensions: |
3014 | 1 | tkerber | nc.createDimension('dim1', 1) |
3015 | 1 | tkerber | c = nc.createVariable('constraints', 'c', ('dim1',)) |
3016 | 1 | tkerber | else:
|
3017 | 1 | tkerber | c = nc.variables['constraints']
|
3018 | 1 | tkerber | #we store the pickle string as an attribute of a
|
3019 | 1 | tkerber | #netcdf variable because that way we do not have to
|
3020 | 1 | tkerber | #know how long the string is. with a character
|
3021 | 1 | tkerber | #variable you have to specify the dimension of the
|
3022 | 1 | tkerber | #string ahead of time.
|
3023 | 1 | tkerber | c.data = pickle.dumps(constraints) |
3024 | 1 | tkerber | nc.close() |
3025 | 1 | tkerber | else:
|
3026 | 1 | tkerber | # getting here means there where no constraints on the
|
3027 | 1 | tkerber | # atoms just written we should check if there are any
|
3028 | 1 | tkerber | # old constraints left in the ncfile
|
3029 | 1 | tkerber | # from a previous atoms, and delete them if so
|
3030 | 1 | tkerber | delete_constraints = False
|
3031 | 1 | tkerber | nc = netCDF(self.get_nc())
|
3032 | 1 | tkerber | if 'constraints' in nc.variables: |
3033 | 1 | tkerber | delete_constraints = True
|
3034 | 1 | tkerber | nc.close() |
3035 | 1 | tkerber | |
3036 | 1 | tkerber | if delete_constraints:
|
3037 | 1 | tkerber | log.debug('deleting old constraints')
|
3038 | 1 | tkerber | self.delete_ncattdimvar(self.nc, |
3039 | 1 | tkerber | ncvars=['constraints'])
|
3040 | 1 | tkerber | |
3041 | 1 | tkerber | def read_atoms(filename): |
3042 | 1 | tkerber | '''read atoms and calculator from an existing netcdf file.
|
3043 | 1 | tkerber |
|
3044 | 1 | tkerber | :Parameters:
|
3045 | 1 | tkerber |
|
3046 | 1 | tkerber | filename : string
|
3047 | 1 | tkerber | name of file to read from.
|
3048 | 1 | tkerber |
|
3049 | 1 | tkerber | static method
|
3050 | 1 | tkerber |
|
3051 | 1 | tkerber | example::
|
3052 | 1 | tkerber |
|
3053 | 1 | tkerber | >>> atoms = Jacapo.read_atoms(ncfile)
|
3054 | 1 | tkerber | >>> calc = atoms.get_calculator()
|
3055 | 1 | tkerber |
|
3056 | 1 | tkerber | this method is here for legacy purposes. I used to use it alot.
|
3057 | 1 | tkerber | '''
|
3058 | 1 | tkerber | |
3059 | 1 | tkerber | calc = Jacapo(filename) |
3060 | 1 | tkerber | atoms = calc.get_atoms() |
3061 | 1 | tkerber | return atoms
|
3062 | 1 | tkerber | |
3063 | 1 | tkerber | read_atoms = staticmethod(read_atoms)
|
3064 | 1 | tkerber | |
3065 | 1 | tkerber | def read_only_atoms(self, ncfile): |
3066 | 1 | tkerber | '''read only the atoms from an existing netcdf file. Used to
|
3067 | 1 | tkerber | initialize a calculator from a ncfilename.
|
3068 | 1 | tkerber |
|
3069 | 1 | tkerber | :Parameters:
|
3070 | 1 | tkerber |
|
3071 | 1 | tkerber | ncfile : string
|
3072 | 1 | tkerber | name of file to read from.
|
3073 | 1 | tkerber |
|
3074 | 1 | tkerber | return ASE.Atoms with no calculator attached or None if no
|
3075 | 1 | tkerber | atoms found
|
3076 | 1 | tkerber | '''
|
3077 | 1 | tkerber | |
3078 | 1 | tkerber | from ase import Atoms |
3079 | 1 | tkerber | |
3080 | 1 | tkerber | nc = netCDF(ncfile, 'r')
|
3081 | 1 | tkerber | #some ncfiles do not have atoms in them
|
3082 | 1 | tkerber | if 'UnitCell' not in nc.variables: |
3083 | 1 | tkerber | log.debug('no unit cell found in ncfile')
|
3084 | 1 | tkerber | nc.close() |
3085 | 1 | tkerber | return None |
3086 | 1 | tkerber | |
3087 | 1 | tkerber | cell = nc.variables['UnitCell'][:][-1] |
3088 | 1 | tkerber | sym = nc.variables['DynamicAtomSpecies'][:]
|
3089 | 1 | tkerber | symbols = [x.tostring().strip() for x in sym] |
3090 | 1 | tkerber | spos = nc.variables['DynamicAtomPositions'][:][-1] |
3091 | 1 | tkerber | |
3092 | 1 | tkerber | pos = np.dot(spos, cell) |
3093 | 1 | tkerber | |
3094 | 1 | tkerber | atoms = Atoms(symbols=symbols, |
3095 | 1 | tkerber | positions=pos, |
3096 | 1 | tkerber | cell=cell) |
3097 | 1 | tkerber | |
3098 | 1 | tkerber | if 'AtomTags' in nc.variables: |
3099 | 1 | tkerber | tags = nc.variables['AtomTags'][:]
|
3100 | 1 | tkerber | atoms.set_tags(tags) |
3101 | 1 | tkerber | |
3102 | 1 | tkerber | if 'InitialAtomicMagneticMoment' in nc.variables: |
3103 | 1 | tkerber | mom = nc.variables['InitialAtomicMagneticMoment'][:]
|
3104 | 1 | tkerber | atoms.set_initial_magnetic_moments(mom) |
3105 | 1 | tkerber | |
3106 | 1 | tkerber | #update psp database
|
3107 | 1 | tkerber | for sym in symbols: |
3108 | 1 | tkerber | vn = 'AtomProperty_%s' % sym
|
3109 | 1 | tkerber | if vn in nc.variables: |
3110 | 1 | tkerber | var = nc.variables[vn] |
3111 | 1 | tkerber | pspfile = var.PspotFile |
3112 | 1 | tkerber | self.psp[sym] = pspfile
|
3113 | 1 | tkerber | |
3114 | 1 | tkerber | #get constraints if they exist
|
3115 | 1 | tkerber | c = nc.variables.get('constraints', None) |
3116 | 1 | tkerber | if c is not None: |
3117 | 1 | tkerber | constraints = pickle.loads(c.data) |
3118 | 1 | tkerber | atoms.set_constraint(constraints) |
3119 | 1 | tkerber | |
3120 | 1 | tkerber | nc.close() |
3121 | 1 | tkerber | |
3122 | 1 | tkerber | return atoms
|
3123 | 1 | tkerber | |
3124 | 1 | tkerber | def delete_ncattdimvar(self, ncf, ncattrs=None, ncdims=None, ncvars=None): |
3125 | 1 | tkerber | '''
|
3126 | 1 | tkerber | helper function to delete attributes,
|
3127 | 1 | tkerber | dimensions and variables in a netcdffile
|
3128 | 1 | tkerber |
|
3129 | 1 | tkerber | this functionality is not implemented for some reason in
|
3130 | 1 | tkerber | netcdf, so the only way to do this is to copy all the
|
3131 | 1 | tkerber | attributes, dimensions, and variables to a new file, excluding
|
3132 | 1 | tkerber | the ones you want to delete and then rename the new file.
|
3133 | 1 | tkerber |
|
3134 | 1 | tkerber | if you delete a dimension, all variables with that dimension
|
3135 | 1 | tkerber | are also deleted.
|
3136 | 1 | tkerber | '''
|
3137 | 1 | tkerber | |
3138 | 1 | tkerber | if ncattrs is None: |
3139 | 1 | tkerber | ncattrs = [] |
3140 | 1 | tkerber | if ncdims is None: |
3141 | 1 | tkerber | ncdims = [] |
3142 | 1 | tkerber | if ncvars is None: |
3143 | 1 | tkerber | ncvars = [] |
3144 | 1 | tkerber | |
3145 | 1 | tkerber | log.debug('beginning: going to delete dims: %s' % str(ncdims)) |
3146 | 1 | tkerber | log.debug('beginning: going to delete vars: %s' % str(ncvars)) |
3147 | 1 | tkerber | |
3148 | 1 | tkerber | oldnc = netCDF(ncf, 'r')
|
3149 | 1 | tkerber | |
3150 | 1 | tkerber | #h,tempnc = tempfile.mkstemp(dir='.',suffix='.nc')
|
3151 | 1 | tkerber | tempnc = ncf+'.temp'
|
3152 | 1 | tkerber | |
3153 | 1 | tkerber | newnc = netCDF(tempnc, 'w')
|
3154 | 1 | tkerber | |
3155 | 1 | tkerber | for attr in dir(oldnc): |
3156 | 1 | tkerber | if attr in ['close', 'createDimension', |
3157 | 1 | tkerber | 'createVariable', 'flush', 'sync']: |
3158 | 1 | tkerber | continue
|
3159 | 1 | tkerber | if attr in ncattrs: |
3160 | 1 | tkerber | continue #do not copy this attribute |
3161 | 1 | tkerber | setattr(newnc, attr, getattr(oldnc, attr)) |
3162 | 1 | tkerber | |
3163 | 1 | tkerber | #copy dimensions
|
3164 | 1 | tkerber | for dim in oldnc.dimensions: |
3165 | 1 | tkerber | if dim in ncdims: |
3166 | 1 | tkerber | log.debug('deleting %s of %s' % (dim, str(ncdims))) |
3167 | 1 | tkerber | continue #do not copy this dimension |
3168 | 1 | tkerber | size = oldnc.dimensions[dim] |
3169 | 1 | tkerber | |
3170 | 1 | tkerber | newnc.createDimension(dim, size) |
3171 | 1 | tkerber | |
3172 | 1 | tkerber | # we need to delete all variables that depended on a deleted dimension
|
3173 | 1 | tkerber | for v in oldnc.variables: |
3174 | 1 | tkerber | dims1 = oldnc.variables[v].dimensions |
3175 | 1 | tkerber | for dim in ncdims: |
3176 | 1 | tkerber | if dim in dims1: |
3177 | 1 | tkerber | s = 'deleting "%s" because it depends on dim "%s"'
|
3178 | 1 | tkerber | log.debug(s %(v, dim)) |
3179 | 1 | tkerber | ncvars.append(v) |
3180 | 1 | tkerber | |
3181 | 1 | tkerber | #copy variables, except the ones to delete
|
3182 | 1 | tkerber | for v in oldnc.variables: |
3183 | 1 | tkerber | if v in ncvars: |
3184 | 1 | tkerber | log.debug('vars to delete: %s ' % ncvars)
|
3185 | 1 | tkerber | log.debug('deleting ncvar: %s' % v)
|
3186 | 1 | tkerber | continue #we do not copy this v over |
3187 | 1 | tkerber | |
3188 | 1 | tkerber | ncvar = oldnc.variables[v] |
3189 | 1 | tkerber | tcode = ncvar.typecode() |
3190 | 1 | tkerber | #char typecodes do not come out right apparently
|
3191 | 1 | tkerber | if tcode == " ": |
3192 | 1 | tkerber | tcode = 'c'
|
3193 | 1 | tkerber | |
3194 | 1 | tkerber | ncvar2 = newnc.createVariable(v, tcode, ncvar.dimensions) |
3195 | 1 | tkerber | try:
|
3196 | 1 | tkerber | ncvar2[:] = ncvar[:] |
3197 | 1 | tkerber | except TypeError: |
3198 | 1 | tkerber | #this exception occurs for scalar variables
|
3199 | 1 | tkerber | #use getValue and assignValue instead
|
3200 | 1 | tkerber | ncvar2.assignValue(ncvar.getValue()) |
3201 | 1 | tkerber | |
3202 | 1 | tkerber | #and variable attributes
|
3203 | 1 | tkerber | #print dir(ncvar)
|
3204 | 1 | tkerber | for att in dir(ncvar): |
3205 | 1 | tkerber | if att in ['assignValue', 'getValue', 'typecode']: |
3206 | 1 | tkerber | continue
|
3207 | 1 | tkerber | setattr(ncvar2, att, getattr(ncvar, att)) |
3208 | 1 | tkerber | |
3209 | 1 | tkerber | oldnc.close() |
3210 | 1 | tkerber | newnc.close() |
3211 | 1 | tkerber | |
3212 | 1 | tkerber | s = 'looking for .nfs files before copying: %s'
|
3213 | 1 | tkerber | log.debug(s % glob.glob('.nfs*'))
|
3214 | 1 | tkerber | |
3215 | 1 | tkerber | #ack!!! this makes .nfsxxx files!!!
|
3216 | 1 | tkerber | #os.close(h) #this avoids the stupid .nfsxxx file
|
3217 | 1 | tkerber | #import shutil
|
3218 | 1 | tkerber | #shutil.move(tempnc,ncf)
|
3219 | 1 | tkerber | |
3220 | 1 | tkerber | #this seems to avoid making the .nfs files
|
3221 | 1 | tkerber | os.system('cp %s %s' % (tempnc, ncf))
|
3222 | 1 | tkerber | os.system('rm %s' % tempnc)
|
3223 | 1 | tkerber | |
3224 | 1 | tkerber | s = 'looking for .nfs files after copying: %s'
|
3225 | 1 | tkerber | log.debug(s % glob.glob('.nfs*'))
|
3226 | 1 | tkerber | |
3227 | 1 | tkerber | def restart(self): |
3228 | 1 | tkerber | '''
|
3229 | 1 | tkerber | Restart the calculator by deleting nc dimensions that will
|
3230 | 1 | tkerber | be rewritten on the next calculation. This is sometimes required
|
3231 | 1 | tkerber | when certain dimensions change related to unitcell size changes
|
3232 | 1 | tkerber | planewave/densitywave cutoffs and kpt changes. These can cause
|
3233 | 1 | tkerber | fortran netcdf errors if the data does not match the pre-defined
|
3234 | 1 | tkerber | dimension sizes.
|
3235 | 1 | tkerber |
|
3236 | 1 | tkerber | also delete all the output from previous calculation.
|
3237 | 1 | tkerber | '''
|
3238 | 1 | tkerber | |
3239 | 1 | tkerber | log.debug('restarting!')
|
3240 | 1 | tkerber | |
3241 | 1 | tkerber | ncdims = ['number_plane_waves',
|
3242 | 1 | tkerber | 'number_IBZ_kpoints',
|
3243 | 1 | tkerber | 'softgrid_dim1',
|
3244 | 1 | tkerber | 'softgrid_dim2',
|
3245 | 1 | tkerber | 'softgrid_dim3',
|
3246 | 1 | tkerber | 'hardgrid_dim1',
|
3247 | 1 | tkerber | 'hardgrid_dim2',
|
3248 | 1 | tkerber | 'hardgrid_dim3',
|
3249 | 1 | tkerber | 'max_projectors_per_atom',
|
3250 | 1 | tkerber | 'atomdos_energygrid_size',
|
3251 | 1 | tkerber | 'atomdos_angular_channels',
|
3252 | 1 | tkerber | 'atomdos_radial_orbs']
|
3253 | 1 | tkerber | |
3254 | 1 | tkerber | ncvars = ['TotalEnergy',
|
3255 | 1 | tkerber | 'TotalFreeEnergy',
|
3256 | 1 | tkerber | 'EvaluateTotalEnergy',
|
3257 | 1 | tkerber | 'DynamicAtomForces',
|
3258 | 1 | tkerber | 'FermiLevel',
|
3259 | 1 | tkerber | 'EnsembleXCEnergies',
|
3260 | 1 | tkerber | 'AtomProjectedDOS_IntegratedDOS',
|
3261 | 1 | tkerber | 'AtomProjectedDOS_OrdinalMap',
|
3262 | 1 | tkerber | 'NumberPlaneWavesKpoint',
|
3263 | 1 | tkerber | 'AtomProjectedDOS_EnergyResolvedDOS',
|
3264 | 1 | tkerber | 'AtomProjectedDOS_EnergyGrid',
|
3265 | 1 | tkerber | 'EvaluateCorrelationEnergy',
|
3266 | 1 | tkerber | 'DynamicAtomVelocities',
|
3267 | 1 | tkerber | 'KpointWeight',
|
3268 | 1 | tkerber | 'EvaluateExchangeEnergy',
|
3269 | 1 | tkerber | 'EffectivePotential',
|
3270 | 1 | tkerber | 'TotalStress',
|
3271 | 1 | tkerber | 'ChargeDensity',
|
3272 | 1 | tkerber | 'WaveFunction',
|
3273 | 1 | tkerber | 'WaveFunctionFFTindex',
|
3274 | 1 | tkerber | 'NumberOfNLProjectors',
|
3275 | 1 | tkerber | 'NLProjectorPsi',
|
3276 | 1 | tkerber | 'TypeNLProjector1',
|
3277 | 1 | tkerber | 'NumberofNLProjectors',
|
3278 | 1 | tkerber | 'PartialCoreDensity',
|
3279 | 1 | tkerber | 'ChargeDensity',
|
3280 | 1 | tkerber | 'ElectrostaticPotential',
|
3281 | 1 | tkerber | 'StructureFactor',
|
3282 | 1 | tkerber | 'EigenValues',
|
3283 | 1 | tkerber | 'OccupationNumbers']
|
3284 | 1 | tkerber | |
3285 | 1 | tkerber | self.delete_ncattdimvar(self.nc, |
3286 | 1 | tkerber | ncattrs=[], |
3287 | 1 | tkerber | ncdims=ncdims, |
3288 | 1 | tkerber | ncvars=ncvars) |
3289 | 1 | tkerber | |
3290 | 1 | tkerber | self.set_status('new') |
3291 | 1 | tkerber | self.ready = False |
3292 | 1 | tkerber | |
3293 | 1 | tkerber | def get_convergence(self): |
3294 | 1 | tkerber | 'return convergence settings for Dacapo'
|
3295 | 1 | tkerber | |
3296 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
3297 | 1 | tkerber | vname = 'ConvergenceControl'
|
3298 | 1 | tkerber | if vname in nc.variables: |
3299 | 1 | tkerber | v = nc.variables[vname] |
3300 | 1 | tkerber | convergence = {} |
3301 | 1 | tkerber | if hasattr(v, 'AbsoluteEnergyConvergence'): |
3302 | 1 | tkerber | convergence['energy'] = v.AbsoluteEnergyConvergence[0] |
3303 | 1 | tkerber | if hasattr(v, 'DensityConvergence'): |
3304 | 1 | tkerber | convergence['density'] = v.DensityConvergence[0] |
3305 | 1 | tkerber | if hasattr(v, 'OccupationConvergence'): |
3306 | 1 | tkerber | convergence['occupation'] = v.OccupationConvergence[0] |
3307 | 1 | tkerber | if hasattr(v, 'MaxNumberOfSteps'): |
3308 | 1 | tkerber | convergence['maxsteps'] = v.MaxNumberOfSteps[0] |
3309 | 1 | tkerber | if hasattr(v, 'CPUTimeLimit'): |
3310 | 1 | tkerber | convergence['cputime'] = v.CPUTimeLimit[0] |
3311 | 1 | tkerber | else:
|
3312 | 1 | tkerber | convergence = None
|
3313 | 1 | tkerber | |
3314 | 1 | tkerber | nc.close() |
3315 | 1 | tkerber | return convergence
|
3316 | 1 | tkerber | |
3317 | 1 | tkerber | def set_convergence(self, |
3318 | 1 | tkerber | energy=0.00001,
|
3319 | 1 | tkerber | density=0.0001,
|
3320 | 1 | tkerber | occupation=0.001,
|
3321 | 1 | tkerber | maxsteps=None,
|
3322 | 1 | tkerber | maxtime=None
|
3323 | 1 | tkerber | ): |
3324 | 1 | tkerber | '''set convergence criteria for stopping the dacapo calculator.
|
3325 | 1 | tkerber |
|
3326 | 1 | tkerber | :Parameters:
|
3327 | 1 | tkerber |
|
3328 | 1 | tkerber | energy : float
|
3329 | 1 | tkerber | set total energy change (eV) required for stopping
|
3330 | 1 | tkerber |
|
3331 | 1 | tkerber | density : float
|
3332 | 1 | tkerber | set density change required for stopping
|
3333 | 1 | tkerber |
|
3334 | 1 | tkerber | occupation : float
|
3335 | 1 | tkerber | set occupation change required for stopping
|
3336 | 1 | tkerber |
|
3337 | 1 | tkerber | maxsteps : integer
|
3338 | 1 | tkerber | specify maximum number of steps to take
|
3339 | 1 | tkerber |
|
3340 | 1 | tkerber | maxtime : integer
|
3341 | 1 | tkerber | specify maximum number of hours to run.
|
3342 | 1 | tkerber |
|
3343 | 1 | tkerber | Autopilot not supported here.
|
3344 | 1 | tkerber | '''
|
3345 | 1 | tkerber | |
3346 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
3347 | 1 | tkerber | vname = 'ConvergenceControl'
|
3348 | 1 | tkerber | if vname in nc.variables: |
3349 | 1 | tkerber | v = nc.variables[vname] |
3350 | 1 | tkerber | else:
|
3351 | 1 | tkerber | v = nc.createVariable(vname, 'c', ('dim1',)) |
3352 | 1 | tkerber | |
3353 | 1 | tkerber | if energy is not None: |
3354 | 1 | tkerber | v.AbsoluteEnergyConvergence = energy |
3355 | 1 | tkerber | if density is not None: |
3356 | 1 | tkerber | v.DensityConvergence = density |
3357 | 1 | tkerber | if occupation is not None: |
3358 | 1 | tkerber | v.OccupationConvergence = occupation |
3359 | 1 | tkerber | if maxsteps is not None: |
3360 | 1 | tkerber | v.MaxNumberOfSteps = maxsteps |
3361 | 1 | tkerber | if maxtime is not None: |
3362 | 1 | tkerber | v.CPUTimeLimit = maxtime |
3363 | 1 | tkerber | |
3364 | 1 | tkerber | nc.sync() |
3365 | 1 | tkerber | nc.close() |
3366 | 1 | tkerber | |
3367 | 1 | tkerber | def get_charge_mixing(self): |
3368 | 1 | tkerber | 'return charge mixing parameters'
|
3369 | 1 | tkerber | |
3370 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
3371 | 1 | tkerber | vname = 'ChargeMixing'
|
3372 | 1 | tkerber | if vname in nc.variables: |
3373 | 1 | tkerber | v = nc.variables[vname] |
3374 | 1 | tkerber | charge_mixing = {} |
3375 | 1 | tkerber | if hasattr(v, 'Method'): |
3376 | 1 | tkerber | charge_mixing['method'] = v.Method
|
3377 | 1 | tkerber | if hasattr(v, 'UpdateCharge'): |
3378 | 1 | tkerber | charge_mixing['updatecharge'] = v.UpdateCharge
|
3379 | 1 | tkerber | if hasattr(v, 'Pulay_MixingHistory'): |
3380 | 1 | tkerber | charge_mixing['mixinghistory'] = v.Pulay_MixingHistory[0] |
3381 | 1 | tkerber | if hasattr(v, 'Pulay_DensityMixingCoeff'): |
3382 | 1 | tkerber | charge_mixing['mixingcoeff'] = v.Pulay_DensityMixingCoeff[0] |
3383 | 1 | tkerber | if hasattr(v, 'Pulay_KerkerPrecondition'): |
3384 | 1 | tkerber | charge_mixing['precondition'] = v.Pulay_KerkerPrecondition
|
3385 | 1 | tkerber | else:
|
3386 | 1 | tkerber | charge_mixing = None
|
3387 | 1 | tkerber | |
3388 | 1 | tkerber | nc.close() |
3389 | 1 | tkerber | return charge_mixing
|
3390 | 1 | tkerber | |
3391 | 1 | tkerber | def set_charge_mixing(self, |
3392 | 1 | tkerber | method='Pulay',
|
3393 | 1 | tkerber | mixinghistory=10,
|
3394 | 1 | tkerber | mixingcoeff=0.1,
|
3395 | 1 | tkerber | precondition='No',
|
3396 | 1 | tkerber | updatecharge='Yes'):
|
3397 | 1 | tkerber | '''set density mixing method and parameters
|
3398 | 1 | tkerber |
|
3399 | 1 | tkerber | :Parameters:
|
3400 | 1 | tkerber |
|
3401 | 1 | tkerber | method : string
|
3402 | 1 | tkerber | 'Pulay' for Pulay mixing. only one supported now
|
3403 | 1 | tkerber |
|
3404 | 1 | tkerber | mixinghistory : integer
|
3405 | 1 | tkerber | number of iterations to mix
|
3406 | 1 | tkerber | Number of charge residual vectors stored for generating
|
3407 | 1 | tkerber | the Pulay estimate on the self-consistent charge density,
|
3408 | 1 | tkerber | see Sec. 4.2 in Kresse/Furthmuller:
|
3409 | 1 | tkerber | Comp. Mat. Sci. 6 (1996) p34ff
|
3410 | 1 | tkerber |
|
3411 | 1 | tkerber | mixingcoeff : float
|
3412 | 1 | tkerber | Mixing coefficient for Pulay charge mixing, corresponding
|
3413 | 1 | tkerber | to A in G$^1$ in Sec. 4.2 in Kresse/Furthmuller:
|
3414 | 1 | tkerber | Comp. Mat. Sci. 6 (1996) p34ff
|
3415 | 1 | tkerber |
|
3416 | 1 | tkerber | precondition : string
|
3417 | 1 | tkerber | 'Yes' or 'No'
|
3418 | 1 | tkerber |
|
3419 | 1 | tkerber | * "Yes" : Kerker preconditiong is used,
|
3420 | 1 | tkerber | i.e. q$_0$ is different from zero, see eq. 82
|
3421 | 1 | tkerber | in Kresse/Furthmuller: Comp. Mat. Sci. 6 (1996).
|
3422 | 1 | tkerber | The value of q$_0$ is fix to give a damping of 20
|
3423 | 1 | tkerber | of the lowest q vector.
|
3424 | 1 | tkerber |
|
3425 | 1 | tkerber | * "No" : q$_0$ is zero and mixing is linear (default).
|
3426 | 1 | tkerber |
|
3427 | 1 | tkerber | updatecharge : string
|
3428 | 1 | tkerber | 'Yes' or 'No'
|
3429 | 1 | tkerber |
|
3430 | 1 | tkerber | * "Yes" : Perform charge mixing according to
|
3431 | 1 | tkerber | ChargeMixing:Method setting
|
3432 | 1 | tkerber |
|
3433 | 1 | tkerber | * "No" : Freeze charge to initial value.
|
3434 | 1 | tkerber | This setting is useful when evaluating the Harris-Foulkes
|
3435 | 1 | tkerber | density functional
|
3436 | 1 | tkerber |
|
3437 | 1 | tkerber | '''
|
3438 | 1 | tkerber | |
3439 | 1 | tkerber | if method == 'Pulay': |
3440 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
3441 | 1 | tkerber | vname = 'ChargeMixing'
|
3442 | 1 | tkerber | if vname in nc.variables: |
3443 | 1 | tkerber | v = nc.variables[vname] |
3444 | 1 | tkerber | else:
|
3445 | 1 | tkerber | v = nc.createVariable(vname, 'c', ('dim1',)) |
3446 | 1 | tkerber | |
3447 | 1 | tkerber | v.Method = 'Pulay'
|
3448 | 1 | tkerber | v.UpdateCharge = updatecharge |
3449 | 1 | tkerber | v.Pulay_MixingHistory = mixinghistory |
3450 | 1 | tkerber | v.Pulay_DensityMixingCoeff = mixingcoeff |
3451 | 1 | tkerber | v.Pulay_KerkerPrecondition = precondition |
3452 | 1 | tkerber | |
3453 | 1 | tkerber | nc.sync() |
3454 | 1 | tkerber | nc.close() |
3455 | 1 | tkerber | |
3456 | 1 | tkerber | self.ready = False |
3457 | 1 | tkerber | |
3458 | 1 | tkerber | def set_electronic_minimization(self, |
3459 | 1 | tkerber | method='eigsolve',
|
3460 | 1 | tkerber | diagsperband=2):
|
3461 | 1 | tkerber | '''set the eigensolver method
|
3462 | 1 | tkerber |
|
3463 | 1 | tkerber | Selector for which subroutine to use for electronic
|
3464 | 1 | tkerber | minimization
|
3465 | 1 | tkerber |
|
3466 | 1 | tkerber | Recognized options : "resmin", "eigsolve" and "rmm-diis".
|
3467 | 1 | tkerber |
|
3468 | 1 | tkerber | * "resmin" : Power method (Lennart Bengtson), can only handle
|
3469 | 1 | tkerber | k-point parallization.
|
3470 | 1 | tkerber |
|
3471 | 1 | tkerber | * "eigsolve : Block Davidson algorithm
|
3472 | 1 | tkerber | (Claus Bendtsen et al).
|
3473 | 1 | tkerber |
|
3474 | 1 | tkerber | * "rmm-diis : Residual minimization
|
3475 | 1 | tkerber | method (RMM), using DIIS (direct inversion in the iterate
|
3476 | 1 | tkerber | subspace) The implementaion follows closely the algorithm
|
3477 | 1 | tkerber | outlined in Kresse and Furthmuller, Comp. Mat. Sci, III.G/III.H
|
3478 | 1 | tkerber |
|
3479 | 1 | tkerber | :Parameters:
|
3480 | 1 | tkerber |
|
3481 | 1 | tkerber | method : string
|
3482 | 1 | tkerber | should be 'resmin', 'eigsolve' or 'rmm-diis'
|
3483 | 1 | tkerber |
|
3484 | 1 | tkerber | diagsperband : int
|
3485 | 1 | tkerber | The number of diagonalizations per band for
|
3486 | 1 | tkerber | electronic minimization algorithms (maps onto internal
|
3487 | 1 | tkerber | variable ndiapb). Applies for both
|
3488 | 1 | tkerber | ElectronicMinimization:Method = "resmin" and "eigsolve".
|
3489 | 1 | tkerber | default value = 2
|
3490 | 1 | tkerber | '''
|
3491 | 1 | tkerber | |
3492 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
3493 | 1 | tkerber | |
3494 | 1 | tkerber | vname = 'ElectronicMinimization'
|
3495 | 1 | tkerber | if vname in nc.variables: |
3496 | 1 | tkerber | v = nc.variables[vname] |
3497 | 1 | tkerber | else:
|
3498 | 1 | tkerber | log.debug('Creating ElectronicMinimization')
|
3499 | 1 | tkerber | v = nc.createVariable(vname, 'c', ('dim1',)) |
3500 | 1 | tkerber | |
3501 | 1 | tkerber | log.debug('setting method for ElectronicMinimization: % s' % method)
|
3502 | 1 | tkerber | v.Method = method |
3503 | 1 | tkerber | log.debug('setting DiagonalizationsBand for ElectronicMinimization')
|
3504 | 1 | tkerber | if diagsperband is not None: |
3505 | 1 | tkerber | v.DiagonalizationsPerBand = diagsperband |
3506 | 1 | tkerber | |
3507 | 1 | tkerber | log.debug('synchronizing ncfile')
|
3508 | 1 | tkerber | nc.sync() |
3509 | 1 | tkerber | |
3510 | 1 | tkerber | nc.close() |
3511 | 1 | tkerber | |
3512 | 1 | tkerber | def get_electronic_minimization(self): |
3513 | 1 | tkerber | '''get method and diagonalizations per band for electronic
|
3514 | 1 | tkerber | minimization algorithms'''
|
3515 | 1 | tkerber | |
3516 | 1 | tkerber | log.debug('getting electronic minimization parameters')
|
3517 | 1 | tkerber | |
3518 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
3519 | 1 | tkerber | vname = 'ElectronicMinimization'
|
3520 | 1 | tkerber | if vname in nc.variables: |
3521 | 1 | tkerber | v = nc.variables[vname] |
3522 | 1 | tkerber | method = v.Method |
3523 | 1 | tkerber | if hasattr(v, 'DiagonalizationsPerBand'): |
3524 | 1 | tkerber | diagsperband = v.DiagonalizationsPerBand[0]
|
3525 | 1 | tkerber | else:
|
3526 | 1 | tkerber | diagsperband = None
|
3527 | 1 | tkerber | else:
|
3528 | 1 | tkerber | method = None
|
3529 | 1 | tkerber | diagsperband = None
|
3530 | 1 | tkerber | nc.close() |
3531 | 1 | tkerber | return {'method':method, |
3532 | 1 | tkerber | 'diagsperband':diagsperband}
|
3533 | 1 | tkerber | |
3534 | 1 | tkerber | def get_occupationstatistics(self): |
3535 | 1 | tkerber | 'return occupation statistics method'
|
3536 | 1 | tkerber | |
3537 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
3538 | 1 | tkerber | if 'ElectronicBands' in nc.variables: |
3539 | 1 | tkerber | v = nc.variables['ElectronicBands']
|
3540 | 1 | tkerber | if hasattr(v, 'OccupationStatistics'): |
3541 | 1 | tkerber | occstat = v.OccupationStatistics |
3542 | 1 | tkerber | else:
|
3543 | 1 | tkerber | occstat = None
|
3544 | 1 | tkerber | else:
|
3545 | 1 | tkerber | occstat = None
|
3546 | 1 | tkerber | nc.close() |
3547 | 1 | tkerber | return occstat
|
3548 | 1 | tkerber | |
3549 | 1 | tkerber | def set_occupationstatistics(self, method): |
3550 | 1 | tkerber | '''
|
3551 | 1 | tkerber | set the method used for smearing the occupations.
|
3552 | 1 | tkerber |
|
3553 | 1 | tkerber | :Parameters:
|
3554 | 1 | tkerber |
|
3555 | 1 | tkerber | method : string
|
3556 | 1 | tkerber | one of 'FermiDirac' or 'MethfesselPaxton'
|
3557 | 1 | tkerber | Currently, the Methfessel-Paxton scheme (PRB 40, 3616 (1989).)
|
3558 | 1 | tkerber | is implemented to 1th order (which is recommemded by most authors).
|
3559 | 1 | tkerber | 'FermiDirac' is the default
|
3560 | 1 | tkerber | '''
|
3561 | 1 | tkerber | |
3562 | 1 | tkerber | nc = netCDF(self.get_nc(), 'a') |
3563 | 1 | tkerber | if 'ElectronicBands' in nc.variables: |
3564 | 1 | tkerber | v = nc.variables['ElectronicBands']
|
3565 | 1 | tkerber | v.OccupationStatistics = method |
3566 | 1 | tkerber | |
3567 | 1 | tkerber | nc.sync() |
3568 | 1 | tkerber | nc.close() |
3569 | 1 | tkerber | |
3570 | 1 | tkerber | def get_fermi_level(self): |
3571 | 1 | tkerber | 'return Fermi level'
|
3572 | 1 | tkerber | |
3573 | 1 | tkerber | if self.calculation_required(): |
3574 | 1 | tkerber | self.calculate()
|
3575 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
3576 | 1 | tkerber | ef = nc.variables['FermiLevel'][-1] |
3577 | 1 | tkerber | nc.close() |
3578 | 1 | tkerber | return ef
|
3579 | 1 | tkerber | |
3580 | 1 | tkerber | def get_occupation_numbers(self, kpt=0, spin=0): |
3581 | 1 | tkerber | '''return occupancies of eigenstates for a kpt and spin
|
3582 | 1 | tkerber |
|
3583 | 1 | tkerber | :Parameters:
|
3584 | 1 | tkerber |
|
3585 | 1 | tkerber | kpt : integer
|
3586 | 1 | tkerber | index of the IBZ kpoint you want the occupation of
|
3587 | 1 | tkerber |
|
3588 | 1 | tkerber | spin : integer
|
3589 | 1 | tkerber | 0 or 1
|
3590 | 1 | tkerber | '''
|
3591 | 1 | tkerber | |
3592 | 1 | tkerber | if self.calculation_required(): |
3593 | 1 | tkerber | self.calculate()
|
3594 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
3595 | 1 | tkerber | occ = nc.variables['OccupationNumbers'][:][-1][kpt, spin] |
3596 | 1 | tkerber | nc.close() |
3597 | 1 | tkerber | return occ
|
3598 | 1 | tkerber | |
3599 | 1 | tkerber | def get_xc_energies(self, *functional): |
3600 | 1 | tkerber | """
|
3601 | 1 | tkerber | Get energies for different functionals self-consistent and
|
3602 | 1 | tkerber | non-self-consistent.
|
3603 | 1 | tkerber |
|
3604 | 1 | tkerber | :Parameters:
|
3605 | 1 | tkerber |
|
3606 | 1 | tkerber | functional : strings
|
3607 | 1 | tkerber | some set of 'PZ','VWN','PW91','PBE','revPBE', 'RPBE'
|
3608 | 1 | tkerber |
|
3609 | 1 | tkerber | This function returns the self-consistent energy and/or
|
3610 | 1 | tkerber | energies associated with various functionals.
|
3611 | 1 | tkerber | The functionals are currently PZ,VWN,PW91,PBE,revPBE, RPBE.
|
3612 | 1 | tkerber | The different energies may be useful for calculating improved
|
3613 | 1 | tkerber | adsorption energies as in B. Hammer, L.B. Hansen and
|
3614 | 1 | tkerber | J.K. Norskov, Phys. Rev. B 59,7413.
|
3615 | 1 | tkerber | Examples:
|
3616 | 1 | tkerber | get_xcenergies() #returns all the energies
|
3617 | 1 | tkerber | get_xcenergies('PBE') # returns the PBE total energy
|
3618 | 1 | tkerber | get_xcenergies('PW91','PBE','revPBE') # returns a
|
3619 | 1 | tkerber | # list of energies in the order asked for
|
3620 | 1 | tkerber | """
|
3621 | 1 | tkerber | |
3622 | 1 | tkerber | if self.calculation_required(): |
3623 | 1 | tkerber | self.calculate()
|
3624 | 1 | tkerber | |
3625 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
3626 | 1 | tkerber | |
3627 | 1 | tkerber | funcenergies = nc.variables['EvaluateTotalEnergy'][:][-1] |
3628 | 1 | tkerber | xcfuncs = nc.variables['EvalFunctionalOfDensity_XC'][:]
|
3629 | 1 | tkerber | |
3630 | 1 | tkerber | nc.close() |
3631 | 1 | tkerber | |
3632 | 1 | tkerber | xcfuncs = [xc.tostring().strip() for xc in xcfuncs] |
3633 | 1 | tkerber | edict = dict(zip(xcfuncs, funcenergies)) |
3634 | 1 | tkerber | |
3635 | 1 | tkerber | if len(functional) == 0: |
3636 | 1 | tkerber | #get all energies by default
|
3637 | 1 | tkerber | functional = xcfuncs |
3638 | 1 | tkerber | |
3639 | 1 | tkerber | return [edict[xc] for xc in functional] |
3640 | 1 | tkerber | |
3641 | 1 | tkerber | # break of compatibility
|
3642 | 1 | tkerber | def get_ados_data(self, |
3643 | 1 | tkerber | atoms, |
3644 | 1 | tkerber | orbitals, |
3645 | 1 | tkerber | cutoff, |
3646 | 1 | tkerber | spin): |
3647 | 1 | tkerber | '''get atom projected data
|
3648 | 1 | tkerber |
|
3649 | 1 | tkerber | :Parameters:
|
3650 | 1 | tkerber |
|
3651 | 1 | tkerber | atoms
|
3652 | 1 | tkerber | list of atom indices (integers)
|
3653 | 1 | tkerber |
|
3654 | 1 | tkerber | orbitals
|
3655 | 1 | tkerber | list of strings
|
3656 | 1 | tkerber | ['s','p','d'],
|
3657 | 1 | tkerber | ['px','py','pz']
|
3658 | 1 | tkerber | ['d_zz', 'dxx-yy', 'd_xy', 'd_xz', 'd_yz']
|
3659 | 1 | tkerber |
|
3660 | 1 | tkerber | cutoff : string
|
3661 | 1 | tkerber | cutoff radius you want the results for 'short' or 'infinite'
|
3662 | 1 | tkerber |
|
3663 | 1 | tkerber | spin
|
3664 | 1 | tkerber | : list of integers
|
3665 | 1 | tkerber | spin you want the results for
|
3666 | 1 | tkerber | [0] or [1] or [0,1] for both
|
3667 | 1 | tkerber |
|
3668 | 1 | tkerber | returns (egrid, ados)
|
3669 | 1 | tkerber | egrid has the fermi level at 0 eV
|
3670 | 1 | tkerber | '''
|
3671 | 1 | tkerber | |
3672 | 1 | tkerber | if self.calculation_required(): |
3673 | 1 | tkerber | self.calculate()
|
3674 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
3675 | 1 | tkerber | omapvar = nc.variables['AtomProjectedDOS_OrdinalMap']
|
3676 | 1 | tkerber | omap = omapvar[:] #indices
|
3677 | 1 | tkerber | c = omapvar.AngularChannels |
3678 | 1 | tkerber | channels = [x.strip() for x in c.split(',')] #channel names |
3679 | 1 | tkerber | #this has dimensions(nprojections, nspins, npoints)
|
3680 | 1 | tkerber | ados = nc.variables['AtomProjectedDOS_EnergyResolvedDOS'][:]
|
3681 | 1 | tkerber | #this is the energy grid for all the atoms
|
3682 | 1 | tkerber | egrid = nc.variables['AtomProjectedDOS_EnergyGrid'][:]
|
3683 | 1 | tkerber | nc.close() |
3684 | 1 | tkerber | |
3685 | 1 | tkerber | #it is apparently not necessary to normalize the egrid to
|
3686 | 1 | tkerber | #the Fermi level. the data is already for ef = 0.
|
3687 | 1 | tkerber | |
3688 | 1 | tkerber | #get list of orbitals, replace 'p' and 'd' in needed
|
3689 | 1 | tkerber | orbs = [] |
3690 | 1 | tkerber | for o in orbitals: |
3691 | 1 | tkerber | if o == 'p': |
3692 | 1 | tkerber | orbs += ['p_x', 'p_y', 'p_z'] |
3693 | 1 | tkerber | elif o == 'd': |
3694 | 1 | tkerber | orbs += ['d_zz', 'dxx-yy', 'd_xy', 'd_xz', 'd_yz'] |
3695 | 1 | tkerber | else:
|
3696 | 1 | tkerber | orbs += [o] |
3697 | 1 | tkerber | |
3698 | 1 | tkerber | orbinds = [channels.index(x) for x in orbs] |
3699 | 1 | tkerber | |
3700 | 1 | tkerber | cutdict = {'infinite':0, |
3701 | 1 | tkerber | 'short':1} |
3702 | 1 | tkerber | |
3703 | 1 | tkerber | icut = cutdict[cutoff] |
3704 | 1 | tkerber | |
3705 | 1 | tkerber | ydata = np.zeros(len(egrid), np.float)
|
3706 | 1 | tkerber | |
3707 | 1 | tkerber | for atomind in atoms: |
3708 | 1 | tkerber | for oi in orbinds: |
3709 | 1 | tkerber | ind = omap[atomind, icut, oi] |
3710 | 1 | tkerber | |
3711 | 1 | tkerber | for si in spin: |
3712 | 1 | tkerber | ydata += ados[ind, si] |
3713 | 1 | tkerber | |
3714 | 1 | tkerber | return (egrid, ydata)
|
3715 | 1 | tkerber | |
3716 | 1 | tkerber | def get_all_eigenvalues(self, spin=0): |
3717 | 1 | tkerber | '''return all the eigenvalues at all the kpoints for a spin.
|
3718 | 1 | tkerber |
|
3719 | 1 | tkerber | :Parameters:
|
3720 | 1 | tkerber |
|
3721 | 1 | tkerber | spin : integer
|
3722 | 1 | tkerber | which spin the eigenvalues are for'''
|
3723 | 1 | tkerber | |
3724 | 1 | tkerber | if self.calculation_required(): |
3725 | 1 | tkerber | self.calculate()
|
3726 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
3727 | 1 | tkerber | ev = nc.variables['EigenValues'][:][-1][:, spin] |
3728 | 1 | tkerber | nc.close() |
3729 | 1 | tkerber | return ev
|
3730 | 1 | tkerber | |
3731 | 1 | tkerber | def get_eigenvalues(self, kpt=0, spin=0): |
3732 | 1 | tkerber | '''return the eigenvalues for a kpt and spin
|
3733 | 1 | tkerber |
|
3734 | 1 | tkerber | :Parameters:
|
3735 | 1 | tkerber |
|
3736 | 1 | tkerber | kpt : integer
|
3737 | 1 | tkerber | index of the IBZ kpoint
|
3738 | 1 | tkerber |
|
3739 | 1 | tkerber | spin : integer
|
3740 | 1 | tkerber | which spin the eigenvalues are for'''
|
3741 | 1 | tkerber | |
3742 | 1 | tkerber | if self.calculation_required(): |
3743 | 1 | tkerber | self.calculate()
|
3744 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
3745 | 1 | tkerber | ev = nc.variables['EigenValues'][:][-1][kpt, spin] |
3746 | 1 | tkerber | nc.close() |
3747 | 1 | tkerber | return ev
|
3748 | 1 | tkerber | |
3749 | 1 | tkerber | def get_k_point_weights(self): |
3750 | 1 | tkerber | 'return the weights on the IBZ kpoints'
|
3751 | 1 | tkerber | |
3752 | 1 | tkerber | if self.calculation_required(): |
3753 | 1 | tkerber | self.calculate()
|
3754 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
3755 | 1 | tkerber | kw = nc.variables['KpointWeight'][:]
|
3756 | 1 | tkerber | nc.close() |
3757 | 1 | tkerber | return kw
|
3758 | 1 | tkerber | |
3759 | 1 | tkerber | def get_magnetic_moment(self): |
3760 | 1 | tkerber | 'calculates the magnetic moment (Bohr-magnetons) of the supercell'
|
3761 | 1 | tkerber | |
3762 | 1 | tkerber | if not self.get_spin_polarized(): |
3763 | 1 | tkerber | return None |
3764 | 1 | tkerber | |
3765 | 1 | tkerber | if self.calculation_required(): |
3766 | 1 | tkerber | self.calculate()
|
3767 | 1 | tkerber | |
3768 | 1 | tkerber | nibzk = len(self.get_ibz_kpoints()) |
3769 | 1 | tkerber | ibzkw = self.get_k_point_weights()
|
3770 | 1 | tkerber | spinup, spindn = 0.0, 0.0 |
3771 | 1 | tkerber | |
3772 | 1 | tkerber | for k in range(nibzk): |
3773 | 1 | tkerber | |
3774 | 1 | tkerber | spinup += self.get_occupation_numbers(k, 0).sum()*ibzkw[k] |
3775 | 1 | tkerber | spindn += self.get_occupation_numbers(k, 1).sum()*ibzkw[k] |
3776 | 1 | tkerber | |
3777 | 1 | tkerber | return (spinup - spindn)
|
3778 | 1 | tkerber | |
3779 | 1 | tkerber | def get_number_of_spins(self): |
3780 | 1 | tkerber | 'if spin-polarized returns 2, if not returns 1'
|
3781 | 1 | tkerber | |
3782 | 1 | tkerber | if self.calculation_required(): |
3783 | 1 | tkerber | self.calculate()
|
3784 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
3785 | 1 | tkerber | spv = nc.variables['ElectronicBands']
|
3786 | 1 | tkerber | nc.close() |
3787 | 1 | tkerber | |
3788 | 1 | tkerber | if hasattr(spv, 'SpinPolarization'): |
3789 | 1 | tkerber | return spv.SpinPolarization
|
3790 | 1 | tkerber | else:
|
3791 | 1 | tkerber | return 1 |
3792 | 1 | tkerber | |
3793 | 1 | tkerber | def get_ibz_kpoints(self): |
3794 | 1 | tkerber | 'return list of kpoints in the irreducible brillouin zone'
|
3795 | 1 | tkerber | |
3796 | 1 | tkerber | if self.calculation_required(): |
3797 | 1 | tkerber | self.calculate()
|
3798 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
3799 | 1 | tkerber | ibz = nc.variables['IBZKpoints'][:]
|
3800 | 1 | tkerber | nc.close() |
3801 | 1 | tkerber | return ibz
|
3802 | 1 | tkerber | |
3803 | 1 | tkerber | get_ibz_k_points = get_ibz_kpoints |
3804 | 1 | tkerber | |
3805 | 1 | tkerber | def get_bz_k_points(self): |
3806 | 1 | tkerber | 'return list of kpoints in the Brillouin zone'
|
3807 | 1 | tkerber | |
3808 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
3809 | 1 | tkerber | if 'BZKpoints' in nc.variables: |
3810 | 1 | tkerber | bz = nc.variables['BZKpoints'][:]
|
3811 | 1 | tkerber | else:
|
3812 | 1 | tkerber | bz = None
|
3813 | 1 | tkerber | nc.close() |
3814 | 1 | tkerber | return bz
|
3815 | 1 | tkerber | |
3816 | 1 | tkerber | def get_effective_potential(self, spin=1): |
3817 | 1 | tkerber | '''
|
3818 | 1 | tkerber | returns the realspace local effective potential for the spin.
|
3819 | 1 | tkerber | the units of the potential are eV
|
3820 | 1 | tkerber |
|
3821 | 1 | tkerber | :Parameters:
|
3822 | 1 | tkerber |
|
3823 | 1 | tkerber | spin : integer
|
3824 | 1 | tkerber | specify which spin you want, 0 or 1
|
3825 | 1 | tkerber |
|
3826 | 1 | tkerber | '''
|
3827 | 1 | tkerber | |
3828 | 1 | tkerber | if self.calculation_required(): |
3829 | 1 | tkerber | self.calculate()
|
3830 | 1 | tkerber | |
3831 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
3832 | 1 | tkerber | efp = np.transpose(nc.variables['EffectivePotential'][:][spin])
|
3833 | 1 | tkerber | nc.close() |
3834 | 1 | tkerber | fftgrids = self.get_fftgrid()
|
3835 | 1 | tkerber | hardgrid = fftgrids['hard']
|
3836 | 1 | tkerber | x, y, z = self.get_ucgrid(hardgrid)
|
3837 | 1 | tkerber | return (x, y, z, efp)
|
3838 | 1 | tkerber | |
3839 | 1 | tkerber | def get_electrostatic_potential(self, spin=0): |
3840 | 1 | tkerber | '''get electrostatic potential
|
3841 | 1 | tkerber |
|
3842 | 1 | tkerber | Netcdf documentation::
|
3843 | 1 | tkerber |
|
3844 | 1 | tkerber | double ElectrostaticPotential(number_of_spin,
|
3845 | 1 | tkerber | hardgrid_dim3,
|
3846 | 1 | tkerber | hardgrid_dim2,
|
3847 | 1 | tkerber | hardgrid_dim1) ;
|
3848 | 1 | tkerber | ElectrostaticPotential:
|
3849 | 1 | tkerber | Description = "realspace local effective potential" ;
|
3850 | 1 | tkerber | unit = "eV" ;
|
3851 | 1 | tkerber |
|
3852 | 1 | tkerber | '''
|
3853 | 1 | tkerber | |
3854 | 1 | tkerber | if self.calculation_required(): |
3855 | 1 | tkerber | self.calculate()
|
3856 | 1 | tkerber | |
3857 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
3858 | 1 | tkerber | esp = np.transpose(nc.variables['ElectrostaticPotential'][:][spin])
|
3859 | 1 | tkerber | nc.close() |
3860 | 1 | tkerber | fftgrids = self.get_fftgrid()
|
3861 | 1 | tkerber | |
3862 | 1 | tkerber | x, y, z = self.get_ucgrid(fftgrids['hard']) |
3863 | 1 | tkerber | |
3864 | 1 | tkerber | return (x, y, z, esp)
|
3865 | 1 | tkerber | |
3866 | 1 | tkerber | def get_charge_density(self, spin=0): |
3867 | 1 | tkerber | '''
|
3868 | 1 | tkerber | return x,y,z,charge density data
|
3869 | 1 | tkerber |
|
3870 | 1 | tkerber | x,y,z are grids sampling the unit cell
|
3871 | 1 | tkerber | cd is the charge density data
|
3872 | 1 | tkerber |
|
3873 | 1 | tkerber | netcdf documentation::
|
3874 | 1 | tkerber |
|
3875 | 1 | tkerber | ChargeDensity(number_of_spin,
|
3876 | 1 | tkerber | hardgrid_dim3,
|
3877 | 1 | tkerber | hardgrid_dim2,
|
3878 | 1 | tkerber | hardgrid_dim1)
|
3879 | 1 | tkerber | ChargeDensity:Description = "realspace charge density" ;
|
3880 | 1 | tkerber | ChargeDensity:unit = "-e/A^3" ;
|
3881 | 1 | tkerber |
|
3882 | 1 | tkerber | '''
|
3883 | 1 | tkerber | |
3884 | 1 | tkerber | if self.calculation_required(): |
3885 | 1 | tkerber | self.calculate()
|
3886 | 1 | tkerber | |
3887 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
3888 | 1 | tkerber | |
3889 | 1 | tkerber | cd = np.transpose(nc.variables['ChargeDensity'][:][spin])
|
3890 | 1 | tkerber | |
3891 | 1 | tkerber | #I am not completely sure why this has to be done
|
3892 | 1 | tkerber | #it does give units of electrons/ang**3
|
3893 | 1 | tkerber | vol = self.get_atoms().get_volume()
|
3894 | 1 | tkerber | cd /= vol |
3895 | 1 | tkerber | nc.close() |
3896 | 1 | tkerber | grids = self.get_fftgrid()
|
3897 | 1 | tkerber | |
3898 | 1 | tkerber | x, y, z = self.get_ucgrid(grids['hard']) |
3899 | 1 | tkerber | return x, y, z, cd
|
3900 | 1 | tkerber | |
3901 | 1 | tkerber | def get_ucgrid(self, dims): |
3902 | 1 | tkerber | '''Return X,Y,Z grids for uniform sampling of the unit cell
|
3903 | 1 | tkerber |
|
3904 | 1 | tkerber | dims = (n0,n1,n2)
|
3905 | 1 | tkerber |
|
3906 | 1 | tkerber | n0 points along unitcell vector 0
|
3907 | 1 | tkerber | n1 points along unitcell vector 1
|
3908 | 1 | tkerber | n2 points along unitcell vector 2
|
3909 | 1 | tkerber | '''
|
3910 | 1 | tkerber | |
3911 | 1 | tkerber | n0, n1, n2 = dims |
3912 | 1 | tkerber | |
3913 | 1 | tkerber | s0 = 1.0/n0
|
3914 | 1 | tkerber | s1 = 1.0/n1
|
3915 | 1 | tkerber | s2 = 1.0/n2
|
3916 | 1 | tkerber | |
3917 | 1 | tkerber | X, Y, Z = np.mgrid[0.0:1.0:s0, |
3918 | 1 | tkerber | 0.0:1.0:s1, |
3919 | 1 | tkerber | 0.0:1.0:s2] |
3920 | 1 | tkerber | |
3921 | 1 | tkerber | C = np.column_stack([X.ravel(), |
3922 | 1 | tkerber | Y.ravel(), |
3923 | 1 | tkerber | Z.ravel()]) |
3924 | 1 | tkerber | |
3925 | 1 | tkerber | atoms = self.get_atoms()
|
3926 | 1 | tkerber | uc = atoms.get_cell() |
3927 | 1 | tkerber | real = np.dot(C, uc) |
3928 | 1 | tkerber | |
3929 | 1 | tkerber | #now convert arrays back to unitcell shape
|
3930 | 1 | tkerber | RX = np.reshape(real[:, 0], (n0, n1, n2))
|
3931 | 1 | tkerber | RY = np.reshape(real[:, 1], (n0, n1, n2))
|
3932 | 1 | tkerber | RZ = np.reshape(real[:, 2], (n0, n1, n2))
|
3933 | 1 | tkerber | return (RX, RY, RZ)
|
3934 | 1 | tkerber | |
3935 | 1 | tkerber | def get_number_of_grid_points(self): |
3936 | 1 | tkerber | 'return soft fft grid'
|
3937 | 1 | tkerber | |
3938 | 1 | tkerber | # needed by ase.dft.wannier
|
3939 | 1 | tkerber | fftgrids = self.get_fftgrid()
|
3940 | 1 | tkerber | return np.array(fftgrids['soft']) |
3941 | 1 | tkerber | |
3942 | 1 | tkerber | def get_wannier_localization_matrix(self, nbands, dirG, kpoint, |
3943 | 1 | tkerber | nextkpoint, G_I, spin): |
3944 | 1 | tkerber | 'return wannier localization matrix'
|
3945 | 1 | tkerber | |
3946 | 1 | tkerber | if self.calculation_required(): |
3947 | 1 | tkerber | self.calculate()
|
3948 | 1 | tkerber | |
3949 | 1 | tkerber | if not hasattr(self, 'wannier'): |
3950 | 1 | tkerber | from utils.wannier import Wannier |
3951 | 1 | tkerber | self.wannier = Wannier(self) |
3952 | 1 | tkerber | self.wannier.set_bands(nbands)
|
3953 | 1 | tkerber | self.wannier.set_spin(spin)
|
3954 | 1 | tkerber | locmat = self.wannier.get_zi_bloch_matrix(dirG,
|
3955 | 1 | tkerber | kpoint, |
3956 | 1 | tkerber | nextkpoint, |
3957 | 1 | tkerber | G_I) |
3958 | 1 | tkerber | return locmat
|
3959 | 1 | tkerber | |
3960 | 1 | tkerber | def initial_wannier(self, |
3961 | 1 | tkerber | initialwannier, |
3962 | 1 | tkerber | kpointgrid, |
3963 | 1 | tkerber | fixedstates, |
3964 | 1 | tkerber | edf, |
3965 | 1 | tkerber | spin): |
3966 | 1 | tkerber | 'return initial wannier'
|
3967 | 1 | tkerber | |
3968 | 1 | tkerber | if self.calculation_required(): |
3969 | 1 | tkerber | self.calculate()
|
3970 | 1 | tkerber | |
3971 | 1 | tkerber | if not hasattr(self, 'wannier'): |
3972 | 1 | tkerber | from utils.wannier import Wannier |
3973 | 1 | tkerber | self.wannier = Wannier(self) |
3974 | 1 | tkerber | |
3975 | 1 | tkerber | self.wannier.set_data(initialwannier)
|
3976 | 1 | tkerber | self.wannier.set_k_point_grid(kpointgrid)
|
3977 | 1 | tkerber | self.wannier.set_spin(spin)
|
3978 | 1 | tkerber | |
3979 | 1 | tkerber | waves = [[self.get_reciprocal_bloch_function(band=band,
|
3980 | 1 | tkerber | kpt=kpt, |
3981 | 1 | tkerber | spin=spin) |
3982 | 1 | tkerber | for band in range(self.get_nbands())] |
3983 | 1 | tkerber | for kpt in range(len(self.get_ibz_k_points()))] |
3984 | 1 | tkerber | |
3985 | 1 | tkerber | self.wannier.setup_m_matrix(waves, self.get_bz_k_points()) |
3986 | 1 | tkerber | |
3987 | 1 | tkerber | #lfn is too keep line length below 78 characters
|
3988 | 1 | tkerber | lfn = self.wannier.get_list_of_coefficients_and_rotation_matrices
|
3989 | 1 | tkerber | c, U = lfn((self.get_nbands(), fixedstates, edf))
|
3990 | 1 | tkerber | |
3991 | 1 | tkerber | U = np.array(U) |
3992 | 1 | tkerber | for k in range(len(c)): |
3993 | 1 | tkerber | c[k] = np.array(c[k]) |
3994 | 1 | tkerber | return c, U
|
3995 | 1 | tkerber | |
3996 | 1 | tkerber | def get_dipole_moment(self,atoms=None): |
3997 | 1 | tkerber | '''
|
3998 | 1 | tkerber | return dipole moment of unit cell
|
3999 | 1 | tkerber |
|
4000 | 1 | tkerber | Defined by the vector connecting the center of electron charge
|
4001 | 1 | tkerber | density to the center of nuclear charge density.
|
4002 | 1 | tkerber |
|
4003 | 1 | tkerber | Units = eV*angstrom
|
4004 | 1 | tkerber |
|
4005 | 1 | tkerber | 1 Debye = 0.208194 eV*angstrom
|
4006 | 1 | tkerber |
|
4007 | 1 | tkerber | '''
|
4008 | 1 | tkerber | if self.calculation_required(): |
4009 | 1 | tkerber | self.calculate()
|
4010 | 1 | tkerber | |
4011 | 1 | tkerber | if atoms is None: |
4012 | 1 | tkerber | atoms = self.get_atoms()
|
4013 | 1 | tkerber | |
4014 | 1 | tkerber | #center of electron charge density
|
4015 | 1 | tkerber | x, y, z, cd = self.get_charge_density()
|
4016 | 1 | tkerber | |
4017 | 1 | tkerber | n1, n2, n3 = cd.shape |
4018 | 1 | tkerber | nelements = n1*n2*n3 |
4019 | 1 | tkerber | voxel_volume = atoms.get_volume()/nelements |
4020 | 1 | tkerber | total_electron_charge = -cd.sum()*voxel_volume |
4021 | 1 | tkerber | |
4022 | 1 | tkerber | |
4023 | 1 | tkerber | electron_density_center = np.array([(cd*x).sum(), |
4024 | 1 | tkerber | (cd*y).sum(), |
4025 | 1 | tkerber | (cd*z).sum()]) |
4026 | 1 | tkerber | electron_density_center *= voxel_volume |
4027 | 1 | tkerber | electron_density_center /= total_electron_charge |
4028 | 1 | tkerber | |
4029 | 1 | tkerber | electron_dipole_moment = electron_density_center*total_electron_charge |
4030 | 1 | tkerber | electron_dipole_moment *= -1.0 #we need the - here so the two |
4031 | 1 | tkerber | #negatives don't cancel
|
4032 | 1 | tkerber | # now the ion charge center
|
4033 | 1 | tkerber | psps = self.get_pseudopotentials()
|
4034 | 1 | tkerber | ion_charge_center = np.array([0.0, 0.0, 0.0]) |
4035 | 1 | tkerber | total_ion_charge = 0.0
|
4036 | 1 | tkerber | for atom in atoms: |
4037 | 1 | tkerber | Z = self.get_psp_nuclear_charge(psps[atom.symbol])
|
4038 | 1 | tkerber | total_ion_charge += Z |
4039 | 1 | tkerber | pos = atom.get_position() |
4040 | 1 | tkerber | ion_charge_center += Z*pos |
4041 | 1 | tkerber | |
4042 | 1 | tkerber | ion_charge_center /= total_ion_charge |
4043 | 1 | tkerber | ion_dipole_moment = ion_charge_center*total_ion_charge |
4044 | 1 | tkerber | |
4045 | 1 | tkerber | dipole_vector = (ion_dipole_moment + electron_dipole_moment) |
4046 | 1 | tkerber | return dipole_vector
|
4047 | 1 | tkerber | |
4048 | 1 | tkerber | |
4049 | 1 | tkerber | def get_reciprocal_bloch_function(self, band=0, kpt=0, spin=0): |
4050 | 1 | tkerber | '''return the reciprocal bloch function. Need for Jacapo
|
4051 | 1 | tkerber | Wannier class.'''
|
4052 | 1 | tkerber | |
4053 | 1 | tkerber | if self.calculation_required(): |
4054 | 1 | tkerber | self.calculate()
|
4055 | 1 | tkerber | |
4056 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
4057 | 1 | tkerber | |
4058 | 1 | tkerber | # read reciprocal bloch function
|
4059 | 1 | tkerber | npw = nc.variables['NumberPlaneWavesKpoint'][:]
|
4060 | 1 | tkerber | bf = nc.variables['WaveFunction'][kpt, spin, band]
|
4061 | 1 | tkerber | wflist = np.zeros(npw[kpt], np.complex) |
4062 | 1 | tkerber | wflist.real = bf[0:npw[kpt], 1] |
4063 | 1 | tkerber | wflist.imag = bf[0:npw[kpt], 0] |
4064 | 1 | tkerber | |
4065 | 1 | tkerber | nc.close() |
4066 | 1 | tkerber | |
4067 | 1 | tkerber | return wflist
|
4068 | 1 | tkerber | |
4069 | 1 | tkerber | def get_reciprocal_fft_index(self, kpt=0): |
4070 | 1 | tkerber | '''return the Wave Function FFT Index'''
|
4071 | 1 | tkerber | |
4072 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
4073 | 1 | tkerber | recind = nc.variables['WaveFunctionFFTindex'][kpt, :, :]
|
4074 | 1 | tkerber | nc.close() |
4075 | 1 | tkerber | return recind
|
4076 | 1 | tkerber | |
4077 | 1 | tkerber | def get_ensemble_coefficients(self): |
4078 | 1 | tkerber | 'returns exchange correlation ensemble coefficients'
|
4079 | 1 | tkerber | |
4080 | 1 | tkerber | # adapted from ASE/dacapo.py
|
4081 | 1 | tkerber | # def GetEnsembleCoefficients(self):
|
4082 | 1 | tkerber | # self.Calculate()
|
4083 | 1 | tkerber | # E = self.GetPotentialEnergy()
|
4084 | 1 | tkerber | # xc = self.GetNetCDFEntry('EnsembleXCEnergies')
|
4085 | 1 | tkerber | # Exc = xc[0]
|
4086 | 1 | tkerber | # exc_c = self.GetNetCDFEntry('EvaluateCorrelationEnergy')
|
4087 | 1 | tkerber | # exc_e = self.GetNetCDFEntry('EvaluateExchangeEnergy')
|
4088 | 1 | tkerber | # exc = exc_c + exc_e
|
4089 | 1 | tkerber | # if self.GetXCFunctional() == 'RPBE':
|
4090 | 1 | tkerber | # Exc = exc[-1][-1]
|
4091 | 1 | tkerber | #
|
4092 | 1 | tkerber | # E0 = xc[1] # Fx = 0
|
4093 | 1 | tkerber | #
|
4094 | 1 | tkerber | # diff0 = xc[2] # - Exc
|
4095 | 1 | tkerber | # diff1 = xc[3] # - Exc
|
4096 | 1 | tkerber | # diff2 = xc[4] # - Exc
|
4097 | 1 | tkerber | # coefs = (E + E0 - Exc,diff0-E0 ,diff1-E0,diff2-E0)
|
4098 | 1 | tkerber | # print 'ensemble: (%.9f, %.9f, %.9f, %.9f)'% coefs
|
4099 | 1 | tkerber | # return num.array(coefs)
|
4100 | 1 | tkerber | if self.calculation_required(): |
4101 | 1 | tkerber | self.calculate()
|
4102 | 1 | tkerber | |
4103 | 1 | tkerber | E = self.get_potential_energy()
|
4104 | 1 | tkerber | nc = netCDF(self.get_nc(), 'r') |
4105 | 1 | tkerber | if 'EnsembleXCEnergies' in nc.variables: |
4106 | 1 | tkerber | v = nc.variables['EnsembleXCEnergies']
|
4107 | 1 | tkerber | xc = v[:] |
4108 | 1 | tkerber | |
4109 | 1 | tkerber | EXC = xc[0]
|
4110 | 1 | tkerber | |
4111 | 1 | tkerber | if 'EvaluateCorrelationEnergy' in nc.variables: |
4112 | 1 | tkerber | v = nc.variables['EvaluateCorrelationEnergy']
|
4113 | 1 | tkerber | exc_c = v[:] |
4114 | 1 | tkerber | |
4115 | 1 | tkerber | if 'EvaluateExchangeEnergy' in nc.variables: |
4116 | 1 | tkerber | v = nc.variables['EvaluateExchangeEnergy']
|
4117 | 1 | tkerber | exc_e = v[:] |
4118 | 1 | tkerber | |
4119 | 1 | tkerber | exc = exc_c + exc_e |
4120 | 1 | tkerber | |
4121 | 1 | tkerber | if self.get_xc == 'RPBE': |
4122 | 1 | tkerber | EXC = exc[-1][-1] |
4123 | 1 | tkerber | |
4124 | 1 | tkerber | E0 = xc[1] # Fx = 0 |
4125 | 1 | tkerber | |
4126 | 1 | tkerber | diff0 = xc[2] # - Exc |
4127 | 1 | tkerber | diff1 = xc[3] # - Exc |
4128 | 1 | tkerber | diff2 = xc[4] # - Exc |
4129 | 1 | tkerber | coefs = (E + E0 - EXC, diff0-E0, diff1-E0, diff2-E0) |
4130 | 1 | tkerber | log.info('ensemble: (%.9f, %.9f, %.9f, %.9f)'% coefs)
|
4131 | 1 | tkerber | return np.array(coefs)
|
4132 | 1 | tkerber | |
4133 | 1 | tkerber | def get_pseudo_wave_function(self, band=0, kpt=0, spin=0, pad=True): |
4134 | 1 | tkerber | |
4135 | 1 | tkerber | '''return the pseudo wavefunction'''
|
4136 | 1 | tkerber | |
4137 | 1 | tkerber | # pad=True does nothing here.
|
4138 | 1 | tkerber | if self.calculation_required(): |
4139 | 1 | tkerber | self.calculate()
|
4140 | 1 | tkerber | |
4141 | 1 | tkerber | ibz = self.get_ibz_kpoints()
|
4142 | 1 | tkerber | |
4143 | 1 | tkerber | #get the reciprocal bloch function
|
4144 | 1 | tkerber | wflist = self.get_reciprocal_bloch_function(band=band,
|
4145 | 1 | tkerber | kpt=kpt, |
4146 | 1 | tkerber | spin=spin) |
4147 | 1 | tkerber | # wflist == Reciprocal Bloch Function
|
4148 | 1 | tkerber | |
4149 | 1 | tkerber | recind = self. get_reciprocal_fft_index(kpt)
|
4150 | 1 | tkerber | grids = self.get_fftgrid()
|
4151 | 1 | tkerber | softgrid = grids['soft']
|
4152 | 1 | tkerber | |
4153 | 1 | tkerber | # GetReciprocalBlochFunctionGrid
|
4154 | 1 | tkerber | wfrec = np.zeros((softgrid), np.complex) |
4155 | 1 | tkerber | |
4156 | 1 | tkerber | for i in xrange(len(wflist)): |
4157 | 1 | tkerber | wfrec[recind[0, i]-1, |
4158 | 1 | tkerber | recind[1, i]-1, |
4159 | 1 | tkerber | recind[2, i]-1] = wflist[i] |
4160 | 1 | tkerber | |
4161 | 1 | tkerber | # calculate Bloch Function
|
4162 | 1 | tkerber | wf = wfrec.copy() |
4163 | 1 | tkerber | dim = wf.shape |
4164 | 1 | tkerber | for i in range(len(dim)): |
4165 | 1 | tkerber | wf = np.fft.fft(wf, dim[i], axis=i) |
4166 | 1 | tkerber | |
4167 | 1 | tkerber | #now the phase function to get the bloch phase
|
4168 | 1 | tkerber | basis = self.get_atoms().get_cell()
|
4169 | 1 | tkerber | kpoint = np.dot(ibz[kpt], basis) #coordinates of relevant
|
4170 | 1 | tkerber | #kpoint in cartesian
|
4171 | 1 | tkerber | #coordinates
|
4172 | 1 | tkerber | def phasefunction(coor): |
4173 | 1 | tkerber | 'return phasefunction'
|
4174 | 1 | tkerber | pf = np.exp(1.0j*np.dot(kpoint, coor))
|
4175 | 1 | tkerber | return pf
|
4176 | 1 | tkerber | |
4177 | 1 | tkerber | # Calculating the Bloch phase at the origin (0,0,0) of the grid
|
4178 | 1 | tkerber | origin = np.array([0., 0., 0.]) |
4179 | 1 | tkerber | blochphase = phasefunction(origin) |
4180 | 1 | tkerber | spatialshape = wf.shape[-len(basis):]
|
4181 | 1 | tkerber | gridunitvectors = np.array(map(lambda unitvector, |
4182 | 1 | tkerber | shape:unitvector/shape, |
4183 | 1 | tkerber | basis, |
4184 | 1 | tkerber | spatialshape)) |
4185 | 1 | tkerber | |
4186 | 1 | tkerber | for dim in range(len(spatialshape)): |
4187 | 1 | tkerber | # Multiplying with the phase at the origin
|
4188 | 1 | tkerber | deltaphase = phasefunction(gridunitvectors[dim]) |
4189 | 1 | tkerber | # and calculating phase difference between each point
|
4190 | 1 | tkerber | newphase = np.fromfunction(lambda i, phase=deltaphase:phase**i,
|
4191 | 1 | tkerber | (spatialshape[dim],)) |
4192 | 1 | tkerber | blochphase = np.multiply.outer(blochphase, newphase) |
4193 | 1 | tkerber | |
4194 | 1 | tkerber | return blochphase*wf
|
4195 | 1 | tkerber | |
4196 | 1 | tkerber | def get_wave_function(self, band=0, kpt=0, spin=0): |
4197 | 1 | tkerber | '''return the wave function. This is the pseudo wave function
|
4198 | 1 | tkerber | divided by volume.'''
|
4199 | 1 | tkerber | |
4200 | 1 | tkerber | pwf = self.get_pseudo_wave_function(band=band,
|
4201 | 1 | tkerber | kpt=kpt, |
4202 | 1 | tkerber | spin=spin, |
4203 | 1 | tkerber | pad=True)
|
4204 | 1 | tkerber | vol = self.get_atoms().get_volume()
|
4205 | 1 | tkerber | fftgrids = self.get_fftgrid()
|
4206 | 1 | tkerber | softgrid = fftgrids['soft']
|
4207 | 1 | tkerber | |
4208 | 1 | tkerber | x, y, z = self.get_ucgrid((softgrid))
|
4209 | 1 | tkerber | |
4210 | 1 | tkerber | return x, y, z, pwf/np.sqrt(vol)
|
4211 | 1 | tkerber | |
4212 | 1 | tkerber | def strip(self): |
4213 | 1 | tkerber | '''remove all large memory nc variables not needed for
|
4214 | 1 | tkerber | anything I use very often.
|
4215 | 1 | tkerber | '''
|
4216 | 1 | tkerber | self.delete_ncattdimvar(self.nc, |
4217 | 1 | tkerber | ncdims=['max_projectors_per_atom'],
|
4218 | 1 | tkerber | ncvars=['WaveFunction',
|
4219 | 1 | tkerber | 'WaveFunctionFFTindex',
|
4220 | 1 | tkerber | 'NumberOfNLProjectors',
|
4221 | 1 | tkerber | 'NLProjectorPsi',
|
4222 | 1 | tkerber | 'TypeNLProjector1',
|
4223 | 1 | tkerber | 'NumberofNLProjectors',
|
4224 | 1 | tkerber | 'PartialCoreDensity',
|
4225 | 1 | tkerber | 'ChargeDensity',
|
4226 | 1 | tkerber | 'ElectrostaticPotential',
|
4227 | 1 | tkerber | 'StructureFactor'])
|
4228 | 1 | tkerber | |
4229 | 1 | tkerber | # shortcut function names
|
4230 | 1 | tkerber | Jacapo.get_cd = Jacapo.get_charge_density |
4231 | 1 | tkerber | Jacapo.get_wf = Jacapo.get_wave_function |
4232 | 1 | tkerber | Jacapo.get_esp = Jacapo.get_electrostatic_potential |
4233 | 1 | tkerber | Jacapo.get_occ = Jacapo.get_occupation_numbers |
4234 | 1 | tkerber | Jacapo.get_ef = Jacapo.get_fermi_level |
4235 | 1 | tkerber | Jacapo.get_number_of_bands = Jacapo.get_nbands |
4236 | 1 | tkerber | Jacapo.set_pseudopotentials = Jacapo.set_psp |