root / ase / lattice / bravais.py @ 11
Historique | Voir | Annoter | Télécharger (18,3 ko)
1 |
"""Bravais.py - class for generating Bravais lattices etc.
|
---|---|
2 |
|
3 |
This is a base class for numerous classes setting up pieces of crystal.
|
4 |
"""
|
5 |
|
6 |
import math |
7 |
import numpy as np |
8 |
from ase.atoms import Atoms |
9 |
import ase.data |
10 |
|
11 |
class Bravais: |
12 |
"""Bravais lattice factory.
|
13 |
|
14 |
This is a base class for the objects producing various lattices
|
15 |
(SC, FCC, ...).
|
16 |
"""
|
17 |
|
18 |
# The following methods are NOT defined here, but must be defined
|
19 |
# in classes inhering from Bravais:
|
20 |
# get_lattice_constant
|
21 |
# make_crystal_basis
|
22 |
# The following class attributes are NOT defined here, but must be defined
|
23 |
# in classes inhering from Bravais:
|
24 |
# int_basis
|
25 |
# inverse_basis
|
26 |
|
27 |
other = {0:(1,2), 1:(2,0), 2:(0,1)} |
28 |
|
29 |
# For Bravais lattices with a basis, set the basis here. Leave as
|
30 |
# None if no basis is present.
|
31 |
bravais_basis = None
|
32 |
|
33 |
# If more than one type of element appear in the crystal, give the
|
34 |
# order here. For example, if two elements appear in a 3:1 ratio,
|
35 |
# bravais_basis could contain four vectors, and element_basis
|
36 |
# could be (0,0,1,0) - the third atom in the basis is different
|
37 |
# from the other three. Leave as None if all atoms are of the
|
38 |
# same type.
|
39 |
element_basis = None
|
40 |
|
41 |
# How small numbers should be considered zero in the unit cell?
|
42 |
chop_tolerance = 1e-10
|
43 |
|
44 |
def __call__(self, symbol, |
45 |
directions=(None,None,None), miller=(None,None,None), |
46 |
size=(1,1,1), latticeconstant=None, |
47 |
pbc=True, align=True, debug=0): |
48 |
"Create a lattice."
|
49 |
self.size = size
|
50 |
self.pbc = pbc
|
51 |
self.debug = debug
|
52 |
self.process_element(symbol)
|
53 |
self.find_directions(directions, miller)
|
54 |
if self.debug: |
55 |
self.print_directions_and_miller()
|
56 |
self.convert_to_natural_basis()
|
57 |
if self.debug >= 2: |
58 |
self.print_directions_and_miller(" (natural basis)") |
59 |
if latticeconstant is None: |
60 |
if self.element_basis is None: |
61 |
self.latticeconstant = self.get_lattice_constant() |
62 |
else:
|
63 |
raise ValueError,\ |
64 |
"A lattice constant must be specified for a compound"
|
65 |
else:
|
66 |
self.latticeconstant = latticeconstant
|
67 |
if self.debug: |
68 |
print "Expected number of atoms in unit cell:", self.calc_num_atoms() |
69 |
if self.debug >= 2: |
70 |
print "Bravais lattice basis:", self.bravais_basis |
71 |
if self.bravais_basis is not None: |
72 |
print " ... in natural basis:", self.natural_bravais_basis |
73 |
self.make_crystal_basis()
|
74 |
self.make_unit_cell()
|
75 |
if align:
|
76 |
self.align()
|
77 |
return self.make_list_of_atoms() |
78 |
|
79 |
def align(self): |
80 |
"Align the first axis along x-axis and the second in the x-y plane."
|
81 |
degree = 180/np.pi
|
82 |
if self.debug >= 2: |
83 |
print "Basis before alignment:" |
84 |
print self.basis |
85 |
if self.basis[0][0]**2 + self.basis[0][2]**2 < 0.01 * self.basis[0][1]**2: |
86 |
# First basis vector along y axis - rotate 90 deg along z
|
87 |
t = np.array([[0, -1, 0], |
88 |
[1, 0, 0], |
89 |
[0, 0, 1]], np.float) |
90 |
self.basis = np.dot(self.basis, t) |
91 |
transf = t |
92 |
if self.debug >= 2: |
93 |
print "Rotating -90 degrees around z axis for numerical stability." |
94 |
print self.basis |
95 |
else:
|
96 |
transf = np.identity(3, np.float)
|
97 |
assert abs(np.linalg.det(transf) - 1) < 1e-6 |
98 |
# Rotate first basis vector into xy plane
|
99 |
theta = math.atan2(self.basis[0,2], self.basis[0,0]) |
100 |
t = np.array([[np.cos(theta), 0, -np.sin(theta)],
|
101 |
[ 0, 1, 0 ], |
102 |
[np.sin(theta), 0, np.cos(theta) ]])
|
103 |
self.basis = np.dot(self.basis, t) |
104 |
transf = np.dot(transf, t) |
105 |
if self.debug >= 2: |
106 |
print "Rotating %f degrees around y axis." % (-theta*degree,) |
107 |
print self.basis |
108 |
assert abs(np.linalg.det(transf) - 1) < 1e-6 |
109 |
# Rotate first basis vector to point along x axis
|
110 |
theta = math.atan2(self.basis[0,1], self.basis[0,0]) |
111 |
t = np.array([[np.cos(theta), -np.sin(theta), 0],
|
112 |
[np.sin(theta), np.cos(theta), 0],
|
113 |
[ 0, 0, 1]]) |
114 |
self.basis = np.dot(self.basis, t) |
115 |
transf = np.dot(transf, t) |
116 |
if self.debug >= 2: |
117 |
print "Rotating %f degrees around z axis." % (-theta*degree,) |
118 |
print self.basis |
119 |
assert abs(np.linalg.det(transf) - 1) < 1e-6 |
120 |
# Rotate second basis vector into xy plane
|
121 |
theta = math.atan2(self.basis[1,2], self.basis[1,1]) |
122 |
t = np.array([[1, 0, 0], |
123 |
[0, np.cos(theta), -np.sin(theta)],
|
124 |
[0, np.sin(theta), np.cos(theta)]])
|
125 |
self.basis = np.dot(self.basis, t) |
126 |
transf = np.dot(transf, t) |
127 |
if self.debug >= 2: |
128 |
print "Rotating %f degrees around x axis." % (-theta*degree,) |
129 |
print self.basis |
130 |
assert abs(np.linalg.det(transf) - 1) < 1e-6 |
131 |
# Now we better rotate the atoms as well
|
132 |
self.atoms = np.dot(self.atoms, transf) |
133 |
# ... and rotate miller_basis
|
134 |
self.miller_basis = np.dot(self.miller_basis, transf) |
135 |
|
136 |
def make_list_of_atoms(self): |
137 |
"Repeat the unit cell."
|
138 |
nrep = self.size[0] * self.size[1] * self.size[2] |
139 |
if nrep <= 0: |
140 |
raise ValueError, "Cannot create a non-positive number of unit cells" |
141 |
# Now the unit cells must be merged.
|
142 |
a2 = [] |
143 |
e2 = [] |
144 |
for i in xrange(self.size[0]): |
145 |
offset = self.basis[0] * i |
146 |
a2.append(self.atoms + offset[np.newaxis,:])
|
147 |
e2.append(self.elements)
|
148 |
atoms = np.concatenate(a2) |
149 |
elements = np.concatenate(e2) |
150 |
a2 = [] |
151 |
e2 = [] |
152 |
for j in xrange(self.size[1]): |
153 |
offset = self.basis[1] * j |
154 |
a2.append(atoms + offset[np.newaxis,:]) |
155 |
e2.append(elements) |
156 |
atoms = np.concatenate(a2) |
157 |
elements = np.concatenate(e2) |
158 |
a2 = [] |
159 |
e2 = [] |
160 |
for k in xrange(self.size[2]): |
161 |
offset = self.basis[2] * k |
162 |
a2.append(atoms + offset[np.newaxis,:]) |
163 |
e2.append(elements) |
164 |
atoms = np.concatenate(a2) |
165 |
elements = np.concatenate(e2) |
166 |
del a2, e2
|
167 |
assert len(atoms) == nrep * len(self.atoms) |
168 |
basis = np.array([[self.size[0],0,0], |
169 |
[0,self.size[1],0], |
170 |
[0,0,self.size[2]]]) |
171 |
basis = np.dot(basis, self.basis)
|
172 |
|
173 |
# Tiny elements should be replaced by zero. The cutoff is
|
174 |
# determined by chop_tolerance which is a class attribute.
|
175 |
basis = np.where(np.abs(basis) < self.chop_tolerance,
|
176 |
0.0, basis)
|
177 |
|
178 |
# None should be replaced, and memory should be freed.
|
179 |
lattice = Lattice(positions=atoms, cell=basis, numbers=elements, |
180 |
pbc=self.pbc)
|
181 |
lattice.millerbasis = self.miller_basis
|
182 |
# Add info for lattice.surface.AddAdsorbate
|
183 |
lattice._addsorbate_info_size = np.array(self.size[:2]) |
184 |
return lattice
|
185 |
|
186 |
def process_element(self, element): |
187 |
"Extract atomic number from element"
|
188 |
# The types that can be elements: integers and strings
|
189 |
if self.element_basis is None: |
190 |
if isinstance(element, type("string")): |
191 |
self.atomicnumber = ase.data.atomic_numbers[element]
|
192 |
elif isinstance(element, int): |
193 |
self.atomicnumber = element
|
194 |
else:
|
195 |
raise TypeError("The symbol argument must be a string or an atomic number.") |
196 |
else:
|
197 |
atomicnumber = [] |
198 |
try:
|
199 |
if len(element) != max(self.element_basis) + 1: |
200 |
oops = True
|
201 |
else:
|
202 |
oops = False
|
203 |
except TypeError: |
204 |
oops = True
|
205 |
if oops:
|
206 |
raise TypeError( |
207 |
("The symbol argument must be a sequence of length %d"
|
208 |
+" (one for each kind of lattice position")
|
209 |
% (max(self.element_basis)+1,)) |
210 |
for e in element: |
211 |
if isinstance(e, type("string")): |
212 |
atomicnumber.append(ase.data.atomic_numbers[e]) |
213 |
elif isinstance(element, int): |
214 |
atomicnumber.append(e) |
215 |
else:
|
216 |
raise TypeError("The symbols argument must be a sequence of strings or atomic numbers.") |
217 |
self.atomicnumber = [atomicnumber[i] for i in self.element_basis] |
218 |
assert len(self.atomicnumber) == len(self.bravais_basis) |
219 |
|
220 |
def convert_to_natural_basis(self): |
221 |
"Convert directions and miller indices to the natural basis."
|
222 |
self.directions = np.dot(self.directions, self.inverse_basis) |
223 |
if self.bravais_basis is not None: |
224 |
self.natural_bravais_basis = np.dot(self.bravais_basis, |
225 |
self.inverse_basis)
|
226 |
for i in (0,1,2): |
227 |
self.directions[i] = reduceindex(self.directions[i]) |
228 |
for i in (0,1,2): |
229 |
(j,k) = self.other[i]
|
230 |
self.miller[i] = reduceindex(self.handedness * |
231 |
cross(self.directions[j],
|
232 |
self.directions[k]))
|
233 |
|
234 |
def calc_num_atoms(self): |
235 |
v = int(round(abs(np.linalg.det(self.directions)))) |
236 |
if self.bravais_basis is None: |
237 |
return v
|
238 |
else:
|
239 |
return v * len(self.bravais_basis) |
240 |
|
241 |
def make_unit_cell(self): |
242 |
"Make the unit cell."
|
243 |
# Make three loops, and find the positions in the integral
|
244 |
# lattice. Each time a position is found, the atom is placed
|
245 |
# in the real unit cell by put_atom().
|
246 |
self.natoms = self.calc_num_atoms() |
247 |
self.nput = 0 |
248 |
self.atoms = np.zeros((self.natoms,3), np.float) |
249 |
self.elements = np.zeros(self.natoms, np.int) |
250 |
self.farpoint = farpoint = sum(self.directions) |
251 |
#printprogress = self.debug and (len(self.atoms) > 250)
|
252 |
percent = 0
|
253 |
# Find the radius of the sphere containing the whole system
|
254 |
sqrad = 0
|
255 |
for i in (0,1): |
256 |
for j in (0,1): |
257 |
for k in (0,1): |
258 |
vect = (i * self.directions[0] + |
259 |
j * self.directions[1] + |
260 |
k * self.directions[2]) |
261 |
if np.dot(vect,vect) > sqrad:
|
262 |
sqrad = np.dot(vect,vect) |
263 |
del i,j,k
|
264 |
# Loop along first crystal axis (i)
|
265 |
for (istart, istep) in ((0,1), (-1,-1)): |
266 |
i = istart |
267 |
icont = True
|
268 |
while icont:
|
269 |
nj = 0
|
270 |
for (jstart, jstep) in ((0,1), (-1,-1)): |
271 |
j = jstart |
272 |
jcont = True
|
273 |
while jcont:
|
274 |
nk = 0
|
275 |
for (kstart, kstep) in ((0,1), (-1,-1)): |
276 |
k = kstart |
277 |
#print "Starting line i=%d, j=%d, k=%d, step=(%d,%d,%d)" % (i,j,k,istep,jstep,kstep)
|
278 |
kcont = True
|
279 |
while kcont:
|
280 |
# Now (i,j,k) loops over Z^3, except that
|
281 |
# the loops can be cut off when we get outside
|
282 |
# the unit cell.
|
283 |
point = np.array((i,j,k)) |
284 |
if self.inside(point): |
285 |
self.put_atom(point)
|
286 |
nk += 1
|
287 |
nj += 1
|
288 |
# Is k too high?
|
289 |
if np.dot(point,point) > sqrad:
|
290 |
assert not self.inside(point) |
291 |
kcont = False
|
292 |
k += kstep |
293 |
# Is j too high?
|
294 |
if i*i+j*j > sqrad:
|
295 |
jcont = False
|
296 |
j += jstep |
297 |
# Is i too high?
|
298 |
if i*i > sqrad:
|
299 |
icont = False
|
300 |
i += istep |
301 |
#if printprogress:
|
302 |
# perce = int(100*self.nput / len(self.atoms))
|
303 |
# if perce > percent + 10:
|
304 |
# print ("%d%%" % perce),
|
305 |
# percent = perce
|
306 |
assert(self.nput == self.natoms) |
307 |
|
308 |
def inside(self, point): |
309 |
"Is a point inside the unit cell?"
|
310 |
return (np.dot(self.miller[0], point) >= 0 and |
311 |
np.dot(self.miller[0], point - self.farpoint) < 0 and |
312 |
np.dot(self.miller[1], point) >= 0 and |
313 |
np.dot(self.miller[1], point - self.farpoint) < 0 and |
314 |
np.dot(self.miller[2], point) >= 0 and |
315 |
np.dot(self.miller[2], point - self.farpoint) < 0) |
316 |
|
317 |
def put_atom(self, point): |
318 |
"Place an atom given its integer coordinates."
|
319 |
if self.bravais_basis is None: |
320 |
# No basis - just place a single atom
|
321 |
pos = np.dot(point, self.crystal_basis)
|
322 |
if self.debug >= 2: |
323 |
print ("Placing an atom at (%d,%d,%d) ~ (%.3f, %.3f, %.3f)." |
324 |
% (tuple(point) + tuple(pos))) |
325 |
self.atoms[self.nput] = pos |
326 |
self.elements[self.nput] = self.atomicnumber |
327 |
self.nput += 1 |
328 |
else:
|
329 |
for i, offset in enumerate(self.natural_bravais_basis): |
330 |
pos = np.dot(point + offset, self.crystal_basis)
|
331 |
if self.debug >= 2: |
332 |
print ("Placing an atom at (%d+%f, %d+%f, %d+%f) ~ (%.3f, %.3f, %.3f)." |
333 |
% (point[0], offset[0], point[1], offset[1], |
334 |
point[2], offset[2], pos[0], pos[1], pos[2])) |
335 |
self.atoms[self.nput] = pos |
336 |
if self.element_basis is None: |
337 |
self.elements[self.nput] = self.atomicnumber |
338 |
else:
|
339 |
self.elements[self.nput] = self.atomicnumber[i] |
340 |
self.nput += 1 |
341 |
|
342 |
def find_directions(self, directions, miller): |
343 |
"Find missing directions and miller indices from the specified ones."
|
344 |
directions = list(directions)
|
345 |
miller = list(miller)
|
346 |
# If no directions etc are specified, use a sensible default.
|
347 |
if directions == [None, None, None] and miller == [None, None, None]: |
348 |
directions = [[1,0,0], [0,1,0], [0,0,1]] |
349 |
# Now fill in missing directions and miller indices. This is an
|
350 |
# iterative process.
|
351 |
change = 1
|
352 |
while change:
|
353 |
change = False
|
354 |
missing = 0
|
355 |
for i in (0,1,2): |
356 |
(j,k) = self.other[i]
|
357 |
if directions[i] is None: |
358 |
missing += 1
|
359 |
if miller[j] is not None and miller[k] is not None: |
360 |
directions[i] = reduceindex(cross(miller[j], |
361 |
miller[k])) |
362 |
change = True
|
363 |
if self.debug >= 2: |
364 |
print "Calculating directions[%d] from miller indices" % i |
365 |
if miller[i] is None: |
366 |
missing += 1
|
367 |
if directions[j] is not None and directions[k] is not None: |
368 |
miller[i] = reduceindex(cross(directions[j], |
369 |
directions[k])) |
370 |
change = True
|
371 |
if self.debug >= 2: |
372 |
print "Calculating miller[%d] from directions" % i |
373 |
if missing:
|
374 |
raise ValueError, "Specification of directions and miller indices is incomplete." |
375 |
# Make sure that everything is Numeric arrays
|
376 |
self.directions = np.array(directions)
|
377 |
self.miller = np.array(miller)
|
378 |
# Check for left-handed coordinate system
|
379 |
if np.linalg.det(self.directions) < 0: |
380 |
print "WARNING: Creating a left-handed coordinate system!" |
381 |
self.miller = -self.miller |
382 |
self.handedness = -1 |
383 |
else:
|
384 |
self.handedness = 1 |
385 |
# Now check for consistency
|
386 |
for i in (0,1,2): |
387 |
(j,k) = self.other[i]
|
388 |
m = reduceindex(self.handedness *
|
389 |
cross(self.directions[j], self.directions[k])) |
390 |
if sum(np.not_equal(m, self.miller[i])): |
391 |
print "ERROR: Miller index %s is inconsisten with directions %d and %d" % (i,j,k) |
392 |
print "Miller indices:" |
393 |
print str(self.miller) |
394 |
print "Directions:" |
395 |
print str(self.directions) |
396 |
raise ValueError, "Inconsistent specification of miller indices and directions." |
397 |
|
398 |
def print_directions_and_miller(self, txt=""): |
399 |
"Print direction vectors and Miller indices."
|
400 |
print "Direction vectors of unit cell%s:" % (txt,) |
401 |
for i in (0,1,2): |
402 |
print " ", self.directions[i] |
403 |
print "Miller indices of surfaces%s:" % (txt,) |
404 |
for i in (0,1,2): |
405 |
print " ", self.miller[i] |
406 |
|
407 |
class MillerInfo: |
408 |
"""Mixin class to provide information about Miller indices."""
|
409 |
def miller_to_direction(self, miller): |
410 |
"""Returns the direction corresponding to a given Miller index."""
|
411 |
return np.dot(miller, self.millerbasis) |
412 |
|
413 |
class Lattice(Atoms, MillerInfo): |
414 |
"""List of atoms initially containing a regular lattice of atoms.
|
415 |
|
416 |
A part from the usual list of atoms methods this list of atoms type
|
417 |
also has a method, `miller_to_direction`, used to convert from Miller
|
418 |
indices to directions in the coordinate system of the lattice.
|
419 |
"""
|
420 |
pass
|
421 |
|
422 |
# Helper functions
|
423 |
def cross(a, b): |
424 |
"""The cross product of two vectors."""
|
425 |
return np.array((a[1]*b[2] - b[1]*a[2], |
426 |
a[2]*b[0] - b[2]*a[0], |
427 |
a[0]*b[1] - b[0]*a[1])) |
428 |
|
429 |
def gcd(a,b): |
430 |
"""Greatest Common Divisor of a and b."""
|
431 |
while a != 0: |
432 |
a,b = b%a,a |
433 |
return b
|
434 |
|
435 |
def reduceindex(M): |
436 |
"Reduce Miller index to the lowest equivalent integers."
|
437 |
oldM = M |
438 |
g = gcd(M[0], M[1]) |
439 |
h = gcd(g, M[2])
|
440 |
while h != 1: |
441 |
M = M/h |
442 |
g = gcd(M[0], M[1]) |
443 |
h = gcd(g, M[2])
|
444 |
if np.dot(oldM, M) > 0: |
445 |
return M
|
446 |
else:
|
447 |
return -M
|
448 |
|