root / ase / optimize / test / __init__.py @ 1
Historique | Voir | Annoter | Télécharger (4,33 ko)
1 |
"""Define a helper function for running tests
|
---|---|
2 |
|
3 |
The skeleton for making a new setup is as follows:
|
4 |
|
5 |
from ase.optimize.test import run_test
|
6 |
|
7 |
def get_atoms():
|
8 |
return Atoms('H')
|
9 |
|
10 |
def get_calculator():
|
11 |
return EMT()
|
12 |
|
13 |
run_test(get_atoms, get_calculator, 'Hydrogen')
|
14 |
"""
|
15 |
import matplotlib |
16 |
matplotlib.rcParams['backend']="Agg" |
17 |
|
18 |
from ase.optimize.bfgs import BFGS |
19 |
from ase.optimize.lbfgs import LBFGS, LBFGSLineSearch |
20 |
from ase.optimize.fire import FIRE |
21 |
from ase.optimize.mdmin import MDMin |
22 |
from ase.optimize.sciopt import SciPyFminCG |
23 |
from ase.optimize.sciopt import SciPyFminBFGS |
24 |
from ase.optimize.bfgslinesearch import BFGSLineSearch |
25 |
|
26 |
from ase.parallel import rank, paropen |
27 |
|
28 |
import matplotlib.pyplot as pl |
29 |
import numpy as np |
30 |
|
31 |
import traceback |
32 |
|
33 |
optimizers = [ |
34 |
'BFGS',
|
35 |
'LBFGS',
|
36 |
'LBFGSLineSearch',
|
37 |
'FIRE',
|
38 |
'MDMin',
|
39 |
'SciPyFminCG',
|
40 |
'SciPyFminBFGS',
|
41 |
'BFGSLineSearch'
|
42 |
] |
43 |
|
44 |
def get_optimizer(optimizer): |
45 |
if optimizer == 'BFGS': return BFGS |
46 |
elif optimizer == 'LBFGS': return LBFGS |
47 |
elif optimizer == 'LBFGSLineSearch': return LBFGSLineSearch |
48 |
elif optimizer == 'FIRE': return FIRE |
49 |
elif optimizer == 'MDMin': return MDMin |
50 |
elif optimizer == 'SciPyFminCG': return SciPyFminCG |
51 |
elif optimizer == 'SciPyFminBFGS': return SciPyFminBFGS |
52 |
elif optimizer == 'BFGSLineSearch': return BFGSLineSearch |
53 |
|
54 |
def run_test(get_atoms, get_calculator, name, |
55 |
fmax=0.05, steps=100, plot=True): |
56 |
|
57 |
plotter = Plotter(name, fmax) |
58 |
csvwriter = CSVWriter(name) |
59 |
for optimizer in optimizers: |
60 |
note = ''
|
61 |
logname = name + '-' + optimizer
|
62 |
|
63 |
atoms = get_atoms() |
64 |
atoms.set_calculator(get_calculator()) |
65 |
opt = get_optimizer(optimizer) |
66 |
relax = opt(atoms, logfile=None)
|
67 |
#logfile = logname + '.log',
|
68 |
#trajectory = logname + '.traj')
|
69 |
|
70 |
obs = DataObserver(atoms) |
71 |
relax.attach(obs) |
72 |
try:
|
73 |
relax.run(fmax = fmax, steps = steps) |
74 |
E = atoms.get_potential_energy() |
75 |
|
76 |
if relax.get_number_of_steps() == steps:
|
77 |
note = 'Not converged in %i steps' % steps
|
78 |
except Exception: |
79 |
traceback.print_exc() |
80 |
note = 'An exception occurred'
|
81 |
E = np.nan |
82 |
|
83 |
nsteps = relax.get_number_of_steps() |
84 |
if hasattr(relax, 'force_calls'): |
85 |
fc = relax.force_calls |
86 |
if rank == 0: |
87 |
print '%-15s %-15s %3i %8.3f (%3i) %s' % (name, optimizer, nsteps, E, fc, note) |
88 |
else:
|
89 |
fc = nsteps |
90 |
if rank == 0: |
91 |
print '%-15s %-15s %3i %8.3f %s' % (name, optimizer, nsteps, E, note) |
92 |
|
93 |
plotter.plot(optimizer, obs.get_E(), obs.get_fmax()) |
94 |
csvwriter.write(optimizer, nsteps, E, fc, note) |
95 |
|
96 |
plotter.save() |
97 |
csvwriter.finalize() |
98 |
|
99 |
class Plotter: |
100 |
def __init__(self, name, fmax): |
101 |
self.name = name
|
102 |
self.fmax = fmax
|
103 |
if rank == 0: |
104 |
self.fig = pl.figure(figsize=[12.0, 9.0]) |
105 |
self.axes0 = self.fig.add_subplot(2, 1, 1) |
106 |
self.axes1 = self.fig.add_subplot(2, 1, 2) |
107 |
|
108 |
def plot(self, optimizer, E, fmax): |
109 |
if rank == 0: |
110 |
self.axes0.plot(E, label = optimizer)
|
111 |
self.axes1.plot(fmax)
|
112 |
|
113 |
def save(self, format='png'): |
114 |
if rank == 0: |
115 |
self.axes0.legend()
|
116 |
self.axes0.set_title(self.name) |
117 |
self.axes0.set_ylabel('E [eV]') |
118 |
#self.axes0.set_yscale('log')
|
119 |
|
120 |
self.axes1.set_xlabel('steps') |
121 |
self.axes1.set_ylabel('fmax [eV/A]') |
122 |
self.axes1.set_yscale('log') |
123 |
self.axes1.axhline(self.fmax, color='k', linestyle='--') |
124 |
self.fig.savefig(self.name + '.' + format) |
125 |
|
126 |
class CSVWriter: |
127 |
def __init__(self, name): |
128 |
self.f = paropen(name + '.csv', 'w') |
129 |
|
130 |
def write(self, optimizer, nsteps, E, fc, note=''): |
131 |
self.f.write(
|
132 |
'%s,%i,%i,%f,%s\n' % (optimizer, nsteps, fc, E, note)
|
133 |
) |
134 |
|
135 |
def finalize(self): |
136 |
self.f.close()
|
137 |
|
138 |
class DataObserver: |
139 |
def __init__(self, atoms): |
140 |
self.atoms = atoms
|
141 |
self.E = []
|
142 |
self.fmax = []
|
143 |
|
144 |
def __call__(self): |
145 |
self.E.append(self.atoms.get_potential_energy()) |
146 |
self.fmax.append(np.sqrt((self.atoms.get_forces()**2).sum(axis=1)).max()) |
147 |
|
148 |
def get_E(self): |
149 |
return np.array(self.E) |
150 |
|
151 |
def get_fmax(self): |
152 |
return np.array(self.fmax) |