root / ase / utils / geometry.py @ 1
Historique | Voir | Annoter | Télécharger (12,3 ko)
1 | 1 | tkerber | # Copyright (C) 2010, Jesper Friis
|
---|---|---|---|
2 | 1 | tkerber | # (see accompanying license files for details).
|
3 | 1 | tkerber | |
4 | 1 | tkerber | """Utility tools for convenient creation of slabs and interfaces of
|
5 | 1 | tkerber | different orientations."""
|
6 | 1 | tkerber | |
7 | 1 | tkerber | import numpy as np |
8 | 1 | tkerber | |
9 | 1 | tkerber | |
10 | 1 | tkerber | |
11 | 1 | tkerber | def gcd(seq): |
12 | 1 | tkerber | """Returns greatest common divisor of integers in *seq*."""
|
13 | 1 | tkerber | def _gcd(m, n): |
14 | 1 | tkerber | while n:
|
15 | 1 | tkerber | m, n = n, m%n |
16 | 1 | tkerber | return m
|
17 | 1 | tkerber | return reduce(_gcd, seq) |
18 | 1 | tkerber | |
19 | 1 | tkerber | |
20 | 1 | tkerber | |
21 | 1 | tkerber | |
22 | 1 | tkerber | def get_layers(atoms, miller, tolerance=0.001): |
23 | 1 | tkerber | """Returns two arrays describing which layer each atom belongs
|
24 | 1 | tkerber | to and the distance between the layers and origo.
|
25 | 1 | tkerber |
|
26 | 1 | tkerber | Parameters:
|
27 | 1 | tkerber |
|
28 | 1 | tkerber | miller: 3 integers
|
29 | 1 | tkerber | The Miller indices of the planes. Actually, any direction
|
30 | 1 | tkerber | in reciprocal space works, so if a and b are two float
|
31 | 1 | tkerber | vectors spanning an atomic plane, you can get all layers
|
32 | 1 | tkerber | parallel to this with miller=np.cross(a,b).
|
33 | 1 | tkerber | tolerance: float
|
34 | 1 | tkerber | The maximum distance in Angstrom along the plane normal for
|
35 | 1 | tkerber | counting two atoms as belonging to the same plane.
|
36 | 1 | tkerber |
|
37 | 1 | tkerber | Returns:
|
38 | 1 | tkerber |
|
39 | 1 | tkerber | tags: array of integres
|
40 | 1 | tkerber | Array of layer indices for each atom.
|
41 | 1 | tkerber | levels: array of floats
|
42 | 1 | tkerber | Array of distances in Angstrom from each layer to origo.
|
43 | 1 | tkerber |
|
44 | 1 | tkerber | Example:
|
45 | 1 | tkerber |
|
46 | 1 | tkerber | >>> import numpy as np
|
47 | 1 | tkerber | >>> from ase.lattice.spacegroup import crystal
|
48 | 1 | tkerber | >>> atoms = crystal('Al', [(0,0,0)], spacegroup=225, cellpar=4.05)
|
49 | 1 | tkerber | >>> np.round(atoms.positions, decimals=5)
|
50 | 1 | tkerber | array([[ 0. , 0. , 0. ],
|
51 | 1 | tkerber | [ 0. , 2.025, 2.025],
|
52 | 1 | tkerber | [ 2.025, 0. , 2.025],
|
53 | 1 | tkerber | [ 2.025, 2.025, 0. ]])
|
54 | 1 | tkerber | >>> get_layers(atoms, (0,0,1))
|
55 | 1 | tkerber | (array([0, 1, 1, 0]), array([ 0. , 2.025]))
|
56 | 1 | tkerber | """
|
57 | 1 | tkerber | miller = np.asarray(miller) |
58 | 1 | tkerber | |
59 | 1 | tkerber | metric = np.dot(atoms.cell, atoms.cell.T) |
60 | 1 | tkerber | c = np.linalg.solve(metric.T, miller.T).T |
61 | 1 | tkerber | miller_norm = np.sqrt(np.dot(c, miller)) |
62 | 1 | tkerber | d = np.dot(atoms.get_scaled_positions(), miller)/miller_norm |
63 | 1 | tkerber | |
64 | 1 | tkerber | keys = np.argsort(d) |
65 | 1 | tkerber | ikeys = np.argsort(keys) |
66 | 1 | tkerber | mask = np.concatenate(([True], np.diff(d[keys]) > tolerance))
|
67 | 1 | tkerber | tags = np.cumsum(mask)[ikeys] |
68 | 1 | tkerber | if tags.min() == 1: |
69 | 1 | tkerber | tags -= 1
|
70 | 1 | tkerber | |
71 | 1 | tkerber | levels = d[keys][mask] |
72 | 1 | tkerber | return tags, levels
|
73 | 1 | tkerber | |
74 | 1 | tkerber | |
75 | 1 | tkerber | |
76 | 1 | tkerber | |
77 | 1 | tkerber | def cut(atoms, a=(1,0,0), b=(0,1,0), c=(0,0,1), origo=(0,0,0), |
78 | 1 | tkerber | nlayers=None, extend=1.0, tolerance=0.001): |
79 | 1 | tkerber | """Cuts out a cell defined by *a*, *b*, *c* and *origo* from a
|
80 | 1 | tkerber | sufficiently repeated copy of *atoms*.
|
81 | 1 | tkerber |
|
82 | 1 | tkerber | Typically, this function is used to create slabs of different
|
83 | 1 | tkerber | sizes and orientations. The vectors *a*, *b* and *c* are in scaled
|
84 | 1 | tkerber | coordinates and defines the returned cell and should normally be
|
85 | 1 | tkerber | integer-valued in order to end up with a periodic
|
86 | 1 | tkerber | structure. However, for systems with sub-translations, like fcc,
|
87 | 1 | tkerber | integer multiples of 1/2 or 1/3 might also make sence for some
|
88 | 1 | tkerber | directions (and will be treated correctly).
|
89 | 1 | tkerber |
|
90 | 1 | tkerber | Parameters:
|
91 | 1 | tkerber |
|
92 | 1 | tkerber | atoms: Atoms instance
|
93 | 1 | tkerber | This should correspond to a repeatable unit cell.
|
94 | 1 | tkerber | a: int | 3 floats
|
95 | 1 | tkerber | The a-vector in scaled coordinates of the cell to cut out. If
|
96 | 1 | tkerber | integer, the a-vector will be the scaled vector from *origo* to the
|
97 | 1 | tkerber | atom with index *a*.
|
98 | 1 | tkerber | b: int | 3 floats
|
99 | 1 | tkerber | The b-vector in scaled coordinates of the cell to cut out. If
|
100 | 1 | tkerber | integer, the b-vector will be the scaled vector from *origo* to the
|
101 | 1 | tkerber | atom with index *b*.
|
102 | 1 | tkerber | c: int | 3 floats
|
103 | 1 | tkerber | The c-vector in scaled coordinates of the cell to cut out. If
|
104 | 1 | tkerber | integer, the c-vector will be the scaled vector from *origo* to the
|
105 | 1 | tkerber | atom with index *c*. Not used if *nlayers* is given.
|
106 | 1 | tkerber | origo: int | 3 floats
|
107 | 1 | tkerber | Position of origo of the new cell in scaled coordinates. If
|
108 | 1 | tkerber | integer, the position of the atom with index *origo* is used.
|
109 | 1 | tkerber | nlayers: int
|
110 | 1 | tkerber | If *nlayers* is not *None*, the returned cell will have
|
111 | 1 | tkerber | *nlayers* atomic layers in the c-direction. The direction of
|
112 | 1 | tkerber | the c-vector will be along cross(a, b) converted to real
|
113 | 1 | tkerber | space, i.e. normal to the plane spanned by a and b in
|
114 | 1 | tkerber | orthorombic systems.
|
115 | 1 | tkerber | extend: 1 or 3 floats
|
116 | 1 | tkerber | The *extend* argument scales the effective cell in which atoms
|
117 | 1 | tkerber | will be included. It must either be three floats or a single
|
118 | 1 | tkerber | float scaling all 3 directions. By setting to a value just
|
119 | 1 | tkerber | above one, e.g. 1.05, it is possible to all the corner and
|
120 | 1 | tkerber | edge atoms in the returned cell. This will of cause make the
|
121 | 1 | tkerber | returned cell non-repeatable, but is very usefull for
|
122 | 1 | tkerber | visualisation.
|
123 | 1 | tkerber | tolerance: float
|
124 | 1 | tkerber | Determines what is defined as a plane. All atoms within
|
125 | 1 | tkerber | *tolerance* Angstroms from a given plane will be considered to
|
126 | 1 | tkerber | belong to that plane.
|
127 | 1 | tkerber |
|
128 | 1 | tkerber | Example:
|
129 | 1 | tkerber |
|
130 | 1 | tkerber | >>> import ase
|
131 | 1 | tkerber | >>> from ase.lattice.spacegroup import crystal
|
132 | 1 | tkerber | >>>
|
133 | 1 | tkerber | # Create an aluminium (111) slab with three layers
|
134 | 1 | tkerber | #
|
135 | 1 | tkerber | # First an unit cell of Al
|
136 | 1 | tkerber | >>> a = 4.05
|
137 | 1 | tkerber | >>> aluminium = crystal('Al', [(0,0,0)], spacegroup=225,
|
138 | 1 | tkerber | ... cellpar=[a, a, a, 90, 90, 90])
|
139 | 1 | tkerber | >>>
|
140 | 1 | tkerber | # Then cut out the slab
|
141 | 1 | tkerber | >>> al111 = cut(aluminium, (1,-1,0), (0,1,-1), nlayers=3)
|
142 | 1 | tkerber | >>>
|
143 | 1 | tkerber | # Visualisation of the skutterudite unit cell
|
144 | 1 | tkerber | #
|
145 | 1 | tkerber | # Again, create a skutterudite unit cell
|
146 | 1 | tkerber | >>> a = 9.04
|
147 | 1 | tkerber | >>> skutterudite = crystal(
|
148 | 1 | tkerber | ... ('Co', 'Sb'),
|
149 | 1 | tkerber | ... basis=[(0.25,0.25,0.25), (0.0, 0.335, 0.158)],
|
150 | 1 | tkerber | ... spacegroup=204,
|
151 | 1 | tkerber | ... cellpar=[a, a, a, 90, 90, 90])
|
152 | 1 | tkerber | >>>
|
153 | 1 | tkerber | # Then use *origo* to put 'Co' at the corners and *extend* to
|
154 | 1 | tkerber | # include all corner and edge atoms.
|
155 | 1 | tkerber | >>> s = cut(skutterudite, origo=(0.25, 0.25, 0.25), extend=1.01)
|
156 | 1 | tkerber | >>> ase.view(s) # doctest: +SKIP
|
157 | 1 | tkerber | """
|
158 | 1 | tkerber | atoms = atoms.copy() |
159 | 1 | tkerber | cell = atoms.cell |
160 | 1 | tkerber | |
161 | 1 | tkerber | if isinstance(origo, int): |
162 | 1 | tkerber | origo = atoms.get_scaled_positions()[origo] |
163 | 1 | tkerber | scaled = (atoms.get_scaled_positions() - origo)%1.0
|
164 | 1 | tkerber | scaled %= 1.0 # needed to ensure that all numbers are *less* than one |
165 | 1 | tkerber | atoms.set_scaled_positions(scaled) |
166 | 1 | tkerber | |
167 | 1 | tkerber | if isinstance(a, int): |
168 | 1 | tkerber | a = scaled[a] - origo |
169 | 1 | tkerber | if isinstance(b, int): |
170 | 1 | tkerber | b = scaled[b] - origo |
171 | 1 | tkerber | if isinstance(c, int): |
172 | 1 | tkerber | c = scaled[c] - origo |
173 | 1 | tkerber | |
174 | 1 | tkerber | a = np.array(a, dtype=float)
|
175 | 1 | tkerber | b = np.array(b, dtype=float)
|
176 | 1 | tkerber | origo = np.array(origo, dtype=float)
|
177 | 1 | tkerber | |
178 | 1 | tkerber | if nlayers:
|
179 | 1 | tkerber | miller = np.cross(a, b) # surface normal
|
180 | 1 | tkerber | # The factor 36 = 2*2*3*3 is because the elements of a and b
|
181 | 1 | tkerber | # might be multiples of 1/2 or 1/3 because of lattice
|
182 | 1 | tkerber | # subtranslations
|
183 | 1 | tkerber | if np.all(36*miller - np.rint(36*miller)) < 1e-5: |
184 | 1 | tkerber | miller = np.rint(36*miller)
|
185 | 1 | tkerber | miller /= gcd(miller) |
186 | 1 | tkerber | tags, layers = get_layers(atoms, miller, tolerance) |
187 | 1 | tkerber | while tags.max() < nlayers:
|
188 | 1 | tkerber | atoms = atoms.repeat(2)
|
189 | 1 | tkerber | tags, layers = get_layers(atoms, miller, tolerance) |
190 | 1 | tkerber | # Convert surface normal in reciprocal space to direction in
|
191 | 1 | tkerber | # real space
|
192 | 1 | tkerber | metric = np.dot(cell, cell.T) |
193 | 1 | tkerber | c = np.linalg.solve(metric.T, miller.T).T |
194 | 1 | tkerber | c *= layers[nlayers]/np.sqrt(np.dot(c, miller)) |
195 | 1 | tkerber | if np.linalg.det(np.dot(np.array([a, b, c]), cell)) < 0: |
196 | 1 | tkerber | c *= -1.0
|
197 | 1 | tkerber | |
198 | 1 | tkerber | newcell = np.dot(np.array([a, b, c]), cell) |
199 | 1 | tkerber | |
200 | 1 | tkerber | # Create a new atoms object, repeated and translated such that
|
201 | 1 | tkerber | # it completely covers the new cell
|
202 | 1 | tkerber | scorners_newcell = np.array([[0., 0., 0.], [0., 0., 1.], |
203 | 1 | tkerber | [0., 1., 0.], [0., 1., 1.], |
204 | 1 | tkerber | [1., 0., 0.], [1., 0., 1.], |
205 | 1 | tkerber | [1., 1., 0.], [1., 1., 1.]]) |
206 | 1 | tkerber | corners = np.dot(scorners_newcell, newcell*extend) |
207 | 1 | tkerber | scorners = np.linalg.solve(cell.T, corners.T).T |
208 | 1 | tkerber | rep = np.ceil(scorners.ptp(axis=0)).astype('int') + 1 |
209 | 1 | tkerber | trans = np.dot(np.floor(scorners.min(axis=0)), cell)
|
210 | 1 | tkerber | atoms = atoms.repeat(rep) |
211 | 1 | tkerber | atoms.translate(trans) |
212 | 1 | tkerber | atoms.set_cell(newcell) |
213 | 1 | tkerber | |
214 | 1 | tkerber | # Mask out atoms outside new cell
|
215 | 1 | tkerber | stol = tolerance # scaled tolerance, XXX
|
216 | 1 | tkerber | maskcell = atoms.cell*extend |
217 | 1 | tkerber | sp = np.linalg.solve(maskcell.T, (atoms.positions).T).T |
218 | 1 | tkerber | mask = np.all(np.logical_and(-stol <= sp, sp < 1-stol), axis=1) |
219 | 1 | tkerber | atoms = atoms[mask] |
220 | 1 | tkerber | |
221 | 1 | tkerber | return atoms
|
222 | 1 | tkerber | |
223 | 1 | tkerber | |
224 | 1 | tkerber | |
225 | 1 | tkerber | |
226 | 1 | tkerber | def stack(atoms1, atoms2, axis=2, cell=None, fix=0.5, |
227 | 1 | tkerber | maxstrain=0.5, distance=None): |
228 | 1 | tkerber | """Return a new Atoms instance with *atoms2* added to atoms1
|
229 | 1 | tkerber | along the given axis. Periodicity in all directions is
|
230 | 1 | tkerber | ensured.
|
231 | 1 | tkerber |
|
232 | 1 | tkerber | The size of the final cell is determined by *cell*, except
|
233 | 1 | tkerber | that the length alongh *axis* will be the sum of
|
234 | 1 | tkerber | *atoms1.cell[axis]* and *atoms2.cell[axis]*. If *cell* is None,
|
235 | 1 | tkerber | it will be interpolated between *atoms1* and *atoms2*, where
|
236 | 1 | tkerber | *fix* determines their relative weight. Hence, if *fix* equals
|
237 | 1 | tkerber | zero, the final cell will be determined purely from *atoms1* and
|
238 | 1 | tkerber | if *fix* equals one, it will be determined purely from
|
239 | 1 | tkerber | *atoms2*.
|
240 | 1 | tkerber |
|
241 | 1 | tkerber | An ValueError exception will be raised if the far corner of
|
242 | 1 | tkerber | the unit cell of either *atoms1* or *atoms2* is displaced more
|
243 | 1 | tkerber | than *maxstrain*. Setting *maxstrain* to None, disable this
|
244 | 1 | tkerber | check.
|
245 | 1 | tkerber |
|
246 | 1 | tkerber | If *distance* is provided, the atomic positions in *atoms1* and
|
247 | 1 | tkerber | *atoms2* as well as the cell lengths along *axis* will be
|
248 | 1 | tkerber | adjusted such that the distance between the distance between
|
249 | 1 | tkerber | the closest atoms in *atoms1* and *atoms2* will equal *distance*.
|
250 | 1 | tkerber | This option uses scipy.optimize.fmin() and hence require scipy
|
251 | 1 | tkerber | to be installed.
|
252 | 1 | tkerber |
|
253 | 1 | tkerber | Example:
|
254 | 1 | tkerber |
|
255 | 1 | tkerber | >>> import ase
|
256 | 1 | tkerber | >>> from ase.lattice.spacegroup import crystal
|
257 | 1 | tkerber | >>>
|
258 | 1 | tkerber | # Create an Ag(110)-Si(110) interface with three atomic layers
|
259 | 1 | tkerber | # on each side.
|
260 | 1 | tkerber | >>> a_ag = 4.09
|
261 | 1 | tkerber | >>> ag = crystal(['Ag'], basis=[(0,0,0)], spacegroup=225,
|
262 | 1 | tkerber | ... cellpar=[a_ag, a_ag, a_ag, 90., 90., 90.])
|
263 | 1 | tkerber | >>> ag110 = cut(ag, (0, 0, 3), (-1.5, 1.5, 0), nlayers=3)
|
264 | 1 | tkerber | >>>
|
265 | 1 | tkerber | >>> a_si = 5.43
|
266 | 1 | tkerber | >>> si = crystal(['Si'], basis=[(0,0,0)], spacegroup=227,
|
267 | 1 | tkerber | ... cellpar=[a_si, a_si, a_si, 90., 90., 90.])
|
268 | 1 | tkerber | >>> si110 = cut(si, (0, 0, 2), (-1, 1, 0), nlayers=3)
|
269 | 1 | tkerber | >>>
|
270 | 1 | tkerber | >>> interface = stack(ag110, si110, maxstrain=1)
|
271 | 1 | tkerber | >>> ase.view(interface) # doctest: +SKIP
|
272 | 1 | tkerber | >>>
|
273 | 1 | tkerber | # Once more, this time adjusted such that the distance between
|
274 | 1 | tkerber | # the closest Ag and Si atoms will be 2.3 Angstrom.
|
275 | 1 | tkerber | >>> interface2 = stack(ag110, si110,
|
276 | 1 | tkerber | ... maxstrain=1, distance=2.3) # doctest:+ELLIPSIS
|
277 | 1 | tkerber | Optimization terminated successfully.
|
278 | 1 | tkerber | ...
|
279 | 1 | tkerber | >>> ase.view(interface2) # doctest: +SKIP
|
280 | 1 | tkerber | """
|
281 | 1 | tkerber | atoms1 = atoms1.copy() |
282 | 1 | tkerber | atoms2 = atoms2.copy() |
283 | 1 | tkerber | |
284 | 1 | tkerber | c1 = np.linalg.norm(atoms1.cell[axis]) |
285 | 1 | tkerber | c2 = np.linalg.norm(atoms2.cell[axis]) |
286 | 1 | tkerber | if cell is None: |
287 | 1 | tkerber | cell1 = atoms1.cell.copy() |
288 | 1 | tkerber | cell2 = atoms2.cell.copy() |
289 | 1 | tkerber | cell1[axis] /= c1 |
290 | 1 | tkerber | cell2[axis] /= c2 |
291 | 1 | tkerber | cell = cell1 + fix*(cell2 - cell1) |
292 | 1 | tkerber | cell[axis] /= np.linalg.norm(cell[axis]) |
293 | 1 | tkerber | cell1 = cell.copy() |
294 | 1 | tkerber | cell2 = cell.copy() |
295 | 1 | tkerber | cell1[axis] *= c1 |
296 | 1 | tkerber | cell2[axis] *= c2 |
297 | 1 | tkerber | |
298 | 1 | tkerber | if (maxstrain and |
299 | 1 | tkerber | (((cell1 - atoms1.cell).sum(axis=0)**2).sum() > maxstrain**2 or |
300 | 1 | tkerber | ((cell2 - atoms2.cell).sum(axis=0)**2).sum() > maxstrain**2)): |
301 | 1 | tkerber | raise ValueError('Incompatible cells.') |
302 | 1 | tkerber | |
303 | 1 | tkerber | sp1 = np.linalg.solve(atoms1.cell.T, atoms1.positions.T).T |
304 | 1 | tkerber | sp2 = np.linalg.solve(atoms2.cell.T, atoms2.positions.T).T |
305 | 1 | tkerber | atoms1.set_cell(cell1) |
306 | 1 | tkerber | atoms2.set_cell(cell2) |
307 | 1 | tkerber | atoms1.set_scaled_positions(sp1) |
308 | 1 | tkerber | atoms2.set_scaled_positions(sp2) |
309 | 1 | tkerber | |
310 | 1 | tkerber | if distance is not None: |
311 | 1 | tkerber | from scipy.optimize import fmin |
312 | 1 | tkerber | def mindist(pos1, pos2): |
313 | 1 | tkerber | n1 = len(pos1)
|
314 | 1 | tkerber | n2 = len(pos2)
|
315 | 1 | tkerber | idx1 = np.arange(n1).repeat(n2) |
316 | 1 | tkerber | idx2 = np.tile(np.arange(n2), n1) |
317 | 1 | tkerber | return np.sqrt(((pos1[idx1] - pos2[idx2])**2).sum(axis=1).min()) |
318 | 1 | tkerber | def func(x): |
319 | 1 | tkerber | t1, t2, h1, h2 = x[0:3], x[3:6], x[6], x[7] |
320 | 1 | tkerber | pos1 = atoms1.positions + t1 |
321 | 1 | tkerber | pos2 = atoms2.positions + t2 |
322 | 1 | tkerber | d1 = mindist(pos1, pos2 + (h1 + 1.0)*atoms1.cell[axis])
|
323 | 1 | tkerber | d2 = mindist(pos2, pos1 + (h2 + 1.0)*atoms2.cell[axis])
|
324 | 1 | tkerber | return (d1 - distance)**2 + (d2 - distance)**2 |
325 | 1 | tkerber | atoms1.center() |
326 | 1 | tkerber | atoms2.center() |
327 | 1 | tkerber | x0 = np.zeros((8,))
|
328 | 1 | tkerber | x = fmin(func, x0) |
329 | 1 | tkerber | t1, t2, h1, h2 = x[0:3], x[3:6], x[6], x[7] |
330 | 1 | tkerber | atoms1.translate(t1) |
331 | 1 | tkerber | atoms2.translate(t2) |
332 | 1 | tkerber | atoms1.cell[axis] *= 1.0 + h1
|
333 | 1 | tkerber | atoms2.cell[axis] *= 1.0 + h2
|
334 | 1 | tkerber | |
335 | 1 | tkerber | atoms2.translate(atoms1.cell[axis]) |
336 | 1 | tkerber | atoms1.cell[axis] += atoms2.cell[axis] |
337 | 1 | tkerber | atoms1.extend(atoms2) |
338 | 1 | tkerber | return atoms1
|
339 | 1 | tkerber | |
340 | 1 | tkerber | |
341 | 1 | tkerber | #-----------------------------------------------------------------
|
342 | 1 | tkerber | # Self test
|
343 | 1 | tkerber | if __name__ == '__main__': |
344 | 1 | tkerber | import doctest |
345 | 1 | tkerber | print 'doctest: ', doctest.testmod() |