Statistiques
| Révision :

root / ase / transport / stm.py @ 1

Historique | Voir | Annoter | Télécharger (7,29 ko)

1 1 tkerber
import numpy as np
2 1 tkerber
from ase.transport.tools import dagger
3 1 tkerber
from ase.transport.selfenergy import LeadSelfEnergy
4 1 tkerber
from ase.transport.greenfunction import GreenFunction
5 1 tkerber
import time
6 1 tkerber
from gpaw.mpi import world
7 1 tkerber
8 1 tkerber
9 1 tkerber
class STM:
10 1 tkerber
    def __init__(self, h1, s1, h2, s2 ,h10, s10, h20, s20, eta1, eta2, w=0.5, pdos=[], logfile = None):
11 1 tkerber
        """XXX
12 1 tkerber

13 1 tkerber
        1. Tip
14 1 tkerber
        2. Surface
15 1 tkerber

16 1 tkerber
        h1: ndarray
17 1 tkerber
            Hamiltonian and overlap matrix for the isolated tip
18 1 tkerber
            calculation.  Note, h1 should contain (at least) one
19 1 tkerber
            principal layer.
20 1 tkerber

21 1 tkerber
        h2: ndarray
22 1 tkerber
            Same as h1 but for the surface.
23 1 tkerber

24 1 tkerber
        h10: ndarray
25 1 tkerber
            periodic part of the tip. must include two and only
26 1 tkerber
            two principal layers.
27 1 tkerber

28 1 tkerber
        h20: ndarray
29 1 tkerber
            same as h10, but for the surface
30 1 tkerber

31 1 tkerber
        The s* are the corresponding overlap matrices.  eta1, and eta
32 1 tkerber
        2 are (finite) infinitesimals.  """
33 1 tkerber
34 1 tkerber
        self.pl1 = len(h10) // 2 #principal layer size for the tip
35 1 tkerber
        self.pl2 = len(h20) // 2 #principal layer size for the surface
36 1 tkerber
        self.h1 = h1
37 1 tkerber
        self.s1 = s1
38 1 tkerber
        self.h2 = h2
39 1 tkerber
        self.s2 = s2
40 1 tkerber
        self.h10 = h10
41 1 tkerber
        self.s10 = s10
42 1 tkerber
        self.h20 = h20
43 1 tkerber
        self.s20 = s20
44 1 tkerber
        self.eta1 = eta1
45 1 tkerber
        self.eta2 = eta2
46 1 tkerber
        self.w = w #asymmetry of the applied bias (0.5=>symmetric)
47 1 tkerber
        self.pdos = []
48 1 tkerber
        self.log = logfile
49 1 tkerber
50 1 tkerber
    def initialize(self, energies, bias=0):
51 1 tkerber
        """
52 1 tkerber
            energies: list of energies
53 1 tkerber
            for which the transmission function should be evaluated.
54 1 tkerber
            bias.
55 1 tkerber
            Will precalculate the surface greenfunctions of the tip and
56 1 tkerber
            surface.
57 1 tkerber
        """
58 1 tkerber
        self.bias = bias
59 1 tkerber
        self.energies = energies
60 1 tkerber
        nenergies = len(energies)
61 1 tkerber
        pl1, pl2 = self.pl1, self.pl2
62 1 tkerber
        nbf1, nbf2 = len(self.h1), len(self.h2)
63 1 tkerber
64 1 tkerber
        #periodic part of the tip
65 1 tkerber
        hs1_dii = self.h10[:pl1, :pl1], self.s10[:pl1, :pl1]
66 1 tkerber
        hs1_dij = self.h10[:pl1, pl1:2*pl1], self.s10[:pl1, pl1:2*pl1]
67 1 tkerber
        #coupling betwen per. and non. per part of the tip
68 1 tkerber
        h1_im = np.zeros((pl1, nbf1), complex)
69 1 tkerber
        s1_im = np.zeros((pl1, nbf1), complex)
70 1 tkerber
        h1_im[:pl1, :pl1], s1_im[:pl1, :pl1] = hs1_dij
71 1 tkerber
        hs1_dim = [h1_im, s1_im]
72 1 tkerber
73 1 tkerber
        #periodic part the surface
74 1 tkerber
        hs2_dii = self.h20[:pl2, :pl2], self.s20[:pl2, :pl2]
75 1 tkerber
        hs2_dij = self.h20[pl2:2*pl2, :pl2], self.s20[pl2:2*pl2, :pl2]
76 1 tkerber
        #coupling betwen per. and non. per part of the surface
77 1 tkerber
        h2_im = np.zeros((pl2, nbf2), complex)
78 1 tkerber
        s2_im = np.zeros((pl2, nbf2), complex)
79 1 tkerber
        h2_im[-pl2:, -pl2:], s2_im[-pl2:, -pl2:] = hs2_dij
80 1 tkerber
        hs2_dim = [h2_im, s2_im]
81 1 tkerber
82 1 tkerber
        #tip and surface greenfunction
83 1 tkerber
        self.selfenergy1 = LeadSelfEnergy(hs1_dii, hs1_dij, hs1_dim, self.eta1)
84 1 tkerber
        self.selfenergy2 = LeadSelfEnergy(hs2_dii, hs2_dij, hs2_dim, self.eta2)
85 1 tkerber
        self.greenfunction1 = GreenFunction(self.h1-self.bias*self.w*self.s1, self.s1,
86 1 tkerber
                                            [self.selfenergy1], self.eta1)
87 1 tkerber
        self.greenfunction2 = GreenFunction(self.h2-self.bias*(self.w-1)*self.s2, self.s2,
88 1 tkerber
                                            [self.selfenergy2], self.eta2)
89 1 tkerber
90 1 tkerber
        #Shift the bands due to the bias.
91 1 tkerber
        bias_shift1 = -bias * self.w
92 1 tkerber
        bias_shift2 = -bias * (self.w - 1)
93 1 tkerber
        self.selfenergy1.set_bias(bias_shift1)
94 1 tkerber
        self.selfenergy2.set_bias(bias_shift2)
95 1 tkerber
96 1 tkerber
        #tip and surface greenfunction matrices.
97 1 tkerber
        nbf1_small = nbf1 #XXX Change this for efficiency in the future
98 1 tkerber
        nbf2_small = nbf2 #XXX -||-
99 1 tkerber
        coupling_list1 = range(nbf1_small)# XXX -||-
100 1 tkerber
        coupling_list2 = range(nbf2_small)# XXX -||-
101 1 tkerber
        self.gft1_emm = np.zeros((nenergies, nbf1_small, nbf1_small), complex)
102 1 tkerber
        self.gft2_emm = np.zeros((nenergies, nbf2_small, nbf2_small), complex)
103 1 tkerber
104 1 tkerber
        for e, energy in enumerate(self.energies):
105 1 tkerber
            if self.log != None: # and world.rank == 0:
106 1 tkerber
                    T = time.localtime()
107 1 tkerber
                    self.log.write(' %d:%02d:%02d, ' % (T[3], T[4], T[5]) +
108 1 tkerber
                                   '%d, %d, %02f\n' % (world.rank, e, energy))
109 1 tkerber
            gft1_mm = self.greenfunction1.retarded(energy)[coupling_list1]
110 1 tkerber
            gft1_mm = np.take(gft1_mm, coupling_list1, axis=1)
111 1 tkerber
112 1 tkerber
            gft2_mm = self.greenfunction2.retarded(energy)[coupling_list2]
113 1 tkerber
            gft2_mm = np.take(gft2_mm, coupling_list2, axis=1)
114 1 tkerber
115 1 tkerber
            self.gft1_emm[e] = gft1_mm
116 1 tkerber
            self.gft2_emm[e] = gft2_mm
117 1 tkerber
118 1 tkerber
            if self.log != None and world.rank == 0:
119 1 tkerber
                self.log.flush()
120 1 tkerber
121 1 tkerber
    def get_transmission(self, v_12, v_11_2=None, v_22_1=None):
122 1 tkerber
        """XXX
123 1 tkerber

124 1 tkerber
        v_12:
125 1 tkerber
            coupling between tip and surface
126 1 tkerber
        v_11_2:
127 1 tkerber
            correction to "on-site" tip elements due to the
128 1 tkerber
            surface (eq.16). Is only included to first order.
129 1 tkerber
        v_22_1:
130 1 tkerber
            corretion to "on-site" surface elements due to he
131 1 tkerber
            tip (eq.17). Is only included to first order.
132 1 tkerber
        """
133 1 tkerber
134 1 tkerber
        dim0 = v_12.shape[0]
135 1 tkerber
        dim1 = v_12.shape[1]
136 1 tkerber
137 1 tkerber
        nenergies = len(self.energies)
138 1 tkerber
        T_e = np.empty(nenergies,float)
139 1 tkerber
        v_21 = dagger(v_12)
140 1 tkerber
        for e, energy in enumerate(self.energies):
141 1 tkerber
            gft1 = self.gft1_emm[e]
142 1 tkerber
            if v_11_2!=None:
143 1 tkerber
                gf1 = np.dot(v_11_2, np.dot(gft1, v_11_2))
144 1 tkerber
                gf1 += gft1 #eq. 16
145 1 tkerber
            else:
146 1 tkerber
                gf1 = gft1
147 1 tkerber
148 1 tkerber
            gft2 = self.gft2_emm[e]
149 1 tkerber
            if v_22_1!=None:
150 1 tkerber
                gf2 = np.dot(v_22_1,np.dot(gft2, v_22_1))
151 1 tkerber
                gf2 += gft2 #eq. 17
152 1 tkerber
            else:
153 1 tkerber
                gf2 = gft2
154 1 tkerber
155 1 tkerber
            a1 = (gf1 - dagger(gf1))
156 1 tkerber
            a2 = (gf2 - dagger(gf2))
157 1 tkerber
            self.v_12 = v_12
158 1 tkerber
            self.a2 = a2
159 1 tkerber
            self.v_21 = v_21
160 1 tkerber
            self.a1 = a1
161 1 tkerber
            v12_a2 = np.dot(v_12, a2[:dim1])
162 1 tkerber
            v21_a1 = np.dot(v_21, a1[-dim0:])
163 1 tkerber
            self.v12_a2 = v12_a2
164 1 tkerber
            self.v21_a1 = v21_a1
165 1 tkerber
            T = -np.trace(np.dot(v12_a2[:,:dim1], v21_a1[:,-dim0:])) #eq. 11
166 1 tkerber
            T_e[e] = T
167 1 tkerber
            self.T_e = T_e
168 1 tkerber
        return T_e
169 1 tkerber
170 1 tkerber
171 1 tkerber
    def get_current(self, bias, v_12, v_11_2=None, v_22_1=None):
172 1 tkerber
        """Very simple function to calculate the current.
173 1 tkerber

174 1 tkerber
        Asummes zero temperature.
175 1 tkerber

176 1 tkerber
        bias: type? XXX
177 1 tkerber
            bias voltage (V)
178 1 tkerber

179 1 tkerber
        v_12: XXX
180 1 tkerber
            coupling between tip and surface.
181 1 tkerber

182 1 tkerber
        v_11_2:
183 1 tkerber
            correction to onsite elements of the tip
184 1 tkerber
            due to the potential of the surface.
185 1 tkerber
        v_22_1:
186 1 tkerber
            correction to onsite elements of the surface
187 1 tkerber
            due to the potential of the tip.
188 1 tkerber
        """
189 1 tkerber
        energies = self.energies
190 1 tkerber
        T_e = self.get_transmission(v_12, v_11_2, v_22_1)
191 1 tkerber
        bias_window = -np.array([bias * self.w, bias * (self.w - 1)])
192 1 tkerber
        bias_window.sort()
193 1 tkerber
        self.bias_window = bias_window
194 1 tkerber
        #print 'bias window', np.around(bias_window,3)
195 1 tkerber
        #print 'Shift of tip lead do to the bias:', self.selfenergy1.bias
196 1 tkerber
        #print 'Shift of surface lead do to the bias:', self.selfenergy2.bias
197 1 tkerber
        i1 = sum(energies < bias_window[0])
198 1 tkerber
        i2 = sum(energies < bias_window[1])
199 1 tkerber
        step = 1
200 1 tkerber
        if i2 < i1:
201 1 tkerber
            step = -1
202 1 tkerber
203 1 tkerber
        return np.sign(bias)*np.trapz(x=energies[i1:i2:step], y=T_e[i1:i2:step])
204 1 tkerber
205 1 tkerber
206 1 tkerber
207 1 tkerber
208 1 tkerber