root / ase / transport / stm.py @ 1
Historique | Voir | Annoter | Télécharger (7,29 ko)
1 | 1 | tkerber | import numpy as np |
---|---|---|---|
2 | 1 | tkerber | from ase.transport.tools import dagger |
3 | 1 | tkerber | from ase.transport.selfenergy import LeadSelfEnergy |
4 | 1 | tkerber | from ase.transport.greenfunction import GreenFunction |
5 | 1 | tkerber | import time |
6 | 1 | tkerber | from gpaw.mpi import world |
7 | 1 | tkerber | |
8 | 1 | tkerber | |
9 | 1 | tkerber | class STM: |
10 | 1 | tkerber | def __init__(self, h1, s1, h2, s2 ,h10, s10, h20, s20, eta1, eta2, w=0.5, pdos=[], logfile = None): |
11 | 1 | tkerber | """XXX
|
12 | 1 | tkerber |
|
13 | 1 | tkerber | 1. Tip
|
14 | 1 | tkerber | 2. Surface
|
15 | 1 | tkerber |
|
16 | 1 | tkerber | h1: ndarray
|
17 | 1 | tkerber | Hamiltonian and overlap matrix for the isolated tip
|
18 | 1 | tkerber | calculation. Note, h1 should contain (at least) one
|
19 | 1 | tkerber | principal layer.
|
20 | 1 | tkerber |
|
21 | 1 | tkerber | h2: ndarray
|
22 | 1 | tkerber | Same as h1 but for the surface.
|
23 | 1 | tkerber |
|
24 | 1 | tkerber | h10: ndarray
|
25 | 1 | tkerber | periodic part of the tip. must include two and only
|
26 | 1 | tkerber | two principal layers.
|
27 | 1 | tkerber |
|
28 | 1 | tkerber | h20: ndarray
|
29 | 1 | tkerber | same as h10, but for the surface
|
30 | 1 | tkerber |
|
31 | 1 | tkerber | The s* are the corresponding overlap matrices. eta1, and eta
|
32 | 1 | tkerber | 2 are (finite) infinitesimals. """
|
33 | 1 | tkerber | |
34 | 1 | tkerber | self.pl1 = len(h10) // 2 #principal layer size for the tip |
35 | 1 | tkerber | self.pl2 = len(h20) // 2 #principal layer size for the surface |
36 | 1 | tkerber | self.h1 = h1
|
37 | 1 | tkerber | self.s1 = s1
|
38 | 1 | tkerber | self.h2 = h2
|
39 | 1 | tkerber | self.s2 = s2
|
40 | 1 | tkerber | self.h10 = h10
|
41 | 1 | tkerber | self.s10 = s10
|
42 | 1 | tkerber | self.h20 = h20
|
43 | 1 | tkerber | self.s20 = s20
|
44 | 1 | tkerber | self.eta1 = eta1
|
45 | 1 | tkerber | self.eta2 = eta2
|
46 | 1 | tkerber | self.w = w #asymmetry of the applied bias (0.5=>symmetric) |
47 | 1 | tkerber | self.pdos = []
|
48 | 1 | tkerber | self.log = logfile
|
49 | 1 | tkerber | |
50 | 1 | tkerber | def initialize(self, energies, bias=0): |
51 | 1 | tkerber | """
|
52 | 1 | tkerber | energies: list of energies
|
53 | 1 | tkerber | for which the transmission function should be evaluated.
|
54 | 1 | tkerber | bias.
|
55 | 1 | tkerber | Will precalculate the surface greenfunctions of the tip and
|
56 | 1 | tkerber | surface.
|
57 | 1 | tkerber | """
|
58 | 1 | tkerber | self.bias = bias
|
59 | 1 | tkerber | self.energies = energies
|
60 | 1 | tkerber | nenergies = len(energies)
|
61 | 1 | tkerber | pl1, pl2 = self.pl1, self.pl2 |
62 | 1 | tkerber | nbf1, nbf2 = len(self.h1), len(self.h2) |
63 | 1 | tkerber | |
64 | 1 | tkerber | #periodic part of the tip
|
65 | 1 | tkerber | hs1_dii = self.h10[:pl1, :pl1], self.s10[:pl1, :pl1] |
66 | 1 | tkerber | hs1_dij = self.h10[:pl1, pl1:2*pl1], self.s10[:pl1, pl1:2*pl1] |
67 | 1 | tkerber | #coupling betwen per. and non. per part of the tip
|
68 | 1 | tkerber | h1_im = np.zeros((pl1, nbf1), complex)
|
69 | 1 | tkerber | s1_im = np.zeros((pl1, nbf1), complex)
|
70 | 1 | tkerber | h1_im[:pl1, :pl1], s1_im[:pl1, :pl1] = hs1_dij |
71 | 1 | tkerber | hs1_dim = [h1_im, s1_im] |
72 | 1 | tkerber | |
73 | 1 | tkerber | #periodic part the surface
|
74 | 1 | tkerber | hs2_dii = self.h20[:pl2, :pl2], self.s20[:pl2, :pl2] |
75 | 1 | tkerber | hs2_dij = self.h20[pl2:2*pl2, :pl2], self.s20[pl2:2*pl2, :pl2] |
76 | 1 | tkerber | #coupling betwen per. and non. per part of the surface
|
77 | 1 | tkerber | h2_im = np.zeros((pl2, nbf2), complex)
|
78 | 1 | tkerber | s2_im = np.zeros((pl2, nbf2), complex)
|
79 | 1 | tkerber | h2_im[-pl2:, -pl2:], s2_im[-pl2:, -pl2:] = hs2_dij |
80 | 1 | tkerber | hs2_dim = [h2_im, s2_im] |
81 | 1 | tkerber | |
82 | 1 | tkerber | #tip and surface greenfunction
|
83 | 1 | tkerber | self.selfenergy1 = LeadSelfEnergy(hs1_dii, hs1_dij, hs1_dim, self.eta1) |
84 | 1 | tkerber | self.selfenergy2 = LeadSelfEnergy(hs2_dii, hs2_dij, hs2_dim, self.eta2) |
85 | 1 | tkerber | self.greenfunction1 = GreenFunction(self.h1-self.bias*self.w*self.s1, self.s1, |
86 | 1 | tkerber | [self.selfenergy1], self.eta1) |
87 | 1 | tkerber | self.greenfunction2 = GreenFunction(self.h2-self.bias*(self.w-1)*self.s2, self.s2, |
88 | 1 | tkerber | [self.selfenergy2], self.eta2) |
89 | 1 | tkerber | |
90 | 1 | tkerber | #Shift the bands due to the bias.
|
91 | 1 | tkerber | bias_shift1 = -bias * self.w
|
92 | 1 | tkerber | bias_shift2 = -bias * (self.w - 1) |
93 | 1 | tkerber | self.selfenergy1.set_bias(bias_shift1)
|
94 | 1 | tkerber | self.selfenergy2.set_bias(bias_shift2)
|
95 | 1 | tkerber | |
96 | 1 | tkerber | #tip and surface greenfunction matrices.
|
97 | 1 | tkerber | nbf1_small = nbf1 #XXX Change this for efficiency in the future
|
98 | 1 | tkerber | nbf2_small = nbf2 #XXX -||-
|
99 | 1 | tkerber | coupling_list1 = range(nbf1_small)# XXX -||- |
100 | 1 | tkerber | coupling_list2 = range(nbf2_small)# XXX -||- |
101 | 1 | tkerber | self.gft1_emm = np.zeros((nenergies, nbf1_small, nbf1_small), complex) |
102 | 1 | tkerber | self.gft2_emm = np.zeros((nenergies, nbf2_small, nbf2_small), complex) |
103 | 1 | tkerber | |
104 | 1 | tkerber | for e, energy in enumerate(self.energies): |
105 | 1 | tkerber | if self.log != None: # and world.rank == 0: |
106 | 1 | tkerber | T = time.localtime() |
107 | 1 | tkerber | self.log.write(' %d:%02d:%02d, ' % (T[3], T[4], T[5]) + |
108 | 1 | tkerber | '%d, %d, %02f\n' % (world.rank, e, energy))
|
109 | 1 | tkerber | gft1_mm = self.greenfunction1.retarded(energy)[coupling_list1]
|
110 | 1 | tkerber | gft1_mm = np.take(gft1_mm, coupling_list1, axis=1)
|
111 | 1 | tkerber | |
112 | 1 | tkerber | gft2_mm = self.greenfunction2.retarded(energy)[coupling_list2]
|
113 | 1 | tkerber | gft2_mm = np.take(gft2_mm, coupling_list2, axis=1)
|
114 | 1 | tkerber | |
115 | 1 | tkerber | self.gft1_emm[e] = gft1_mm
|
116 | 1 | tkerber | self.gft2_emm[e] = gft2_mm
|
117 | 1 | tkerber | |
118 | 1 | tkerber | if self.log != None and world.rank == 0: |
119 | 1 | tkerber | self.log.flush()
|
120 | 1 | tkerber | |
121 | 1 | tkerber | def get_transmission(self, v_12, v_11_2=None, v_22_1=None): |
122 | 1 | tkerber | """XXX
|
123 | 1 | tkerber |
|
124 | 1 | tkerber | v_12:
|
125 | 1 | tkerber | coupling between tip and surface
|
126 | 1 | tkerber | v_11_2:
|
127 | 1 | tkerber | correction to "on-site" tip elements due to the
|
128 | 1 | tkerber | surface (eq.16). Is only included to first order.
|
129 | 1 | tkerber | v_22_1:
|
130 | 1 | tkerber | corretion to "on-site" surface elements due to he
|
131 | 1 | tkerber | tip (eq.17). Is only included to first order.
|
132 | 1 | tkerber | """
|
133 | 1 | tkerber | |
134 | 1 | tkerber | dim0 = v_12.shape[0]
|
135 | 1 | tkerber | dim1 = v_12.shape[1]
|
136 | 1 | tkerber | |
137 | 1 | tkerber | nenergies = len(self.energies) |
138 | 1 | tkerber | T_e = np.empty(nenergies,float)
|
139 | 1 | tkerber | v_21 = dagger(v_12) |
140 | 1 | tkerber | for e, energy in enumerate(self.energies): |
141 | 1 | tkerber | gft1 = self.gft1_emm[e]
|
142 | 1 | tkerber | if v_11_2!=None: |
143 | 1 | tkerber | gf1 = np.dot(v_11_2, np.dot(gft1, v_11_2)) |
144 | 1 | tkerber | gf1 += gft1 #eq. 16
|
145 | 1 | tkerber | else:
|
146 | 1 | tkerber | gf1 = gft1 |
147 | 1 | tkerber | |
148 | 1 | tkerber | gft2 = self.gft2_emm[e]
|
149 | 1 | tkerber | if v_22_1!=None: |
150 | 1 | tkerber | gf2 = np.dot(v_22_1,np.dot(gft2, v_22_1)) |
151 | 1 | tkerber | gf2 += gft2 #eq. 17
|
152 | 1 | tkerber | else:
|
153 | 1 | tkerber | gf2 = gft2 |
154 | 1 | tkerber | |
155 | 1 | tkerber | a1 = (gf1 - dagger(gf1)) |
156 | 1 | tkerber | a2 = (gf2 - dagger(gf2)) |
157 | 1 | tkerber | self.v_12 = v_12
|
158 | 1 | tkerber | self.a2 = a2
|
159 | 1 | tkerber | self.v_21 = v_21
|
160 | 1 | tkerber | self.a1 = a1
|
161 | 1 | tkerber | v12_a2 = np.dot(v_12, a2[:dim1]) |
162 | 1 | tkerber | v21_a1 = np.dot(v_21, a1[-dim0:]) |
163 | 1 | tkerber | self.v12_a2 = v12_a2
|
164 | 1 | tkerber | self.v21_a1 = v21_a1
|
165 | 1 | tkerber | T = -np.trace(np.dot(v12_a2[:,:dim1], v21_a1[:,-dim0:])) #eq. 11
|
166 | 1 | tkerber | T_e[e] = T |
167 | 1 | tkerber | self.T_e = T_e
|
168 | 1 | tkerber | return T_e
|
169 | 1 | tkerber | |
170 | 1 | tkerber | |
171 | 1 | tkerber | def get_current(self, bias, v_12, v_11_2=None, v_22_1=None): |
172 | 1 | tkerber | """Very simple function to calculate the current.
|
173 | 1 | tkerber |
|
174 | 1 | tkerber | Asummes zero temperature.
|
175 | 1 | tkerber |
|
176 | 1 | tkerber | bias: type? XXX
|
177 | 1 | tkerber | bias voltage (V)
|
178 | 1 | tkerber |
|
179 | 1 | tkerber | v_12: XXX
|
180 | 1 | tkerber | coupling between tip and surface.
|
181 | 1 | tkerber |
|
182 | 1 | tkerber | v_11_2:
|
183 | 1 | tkerber | correction to onsite elements of the tip
|
184 | 1 | tkerber | due to the potential of the surface.
|
185 | 1 | tkerber | v_22_1:
|
186 | 1 | tkerber | correction to onsite elements of the surface
|
187 | 1 | tkerber | due to the potential of the tip.
|
188 | 1 | tkerber | """
|
189 | 1 | tkerber | energies = self.energies
|
190 | 1 | tkerber | T_e = self.get_transmission(v_12, v_11_2, v_22_1)
|
191 | 1 | tkerber | bias_window = -np.array([bias * self.w, bias * (self.w - 1)]) |
192 | 1 | tkerber | bias_window.sort() |
193 | 1 | tkerber | self.bias_window = bias_window
|
194 | 1 | tkerber | #print 'bias window', np.around(bias_window,3)
|
195 | 1 | tkerber | #print 'Shift of tip lead do to the bias:', self.selfenergy1.bias
|
196 | 1 | tkerber | #print 'Shift of surface lead do to the bias:', self.selfenergy2.bias
|
197 | 1 | tkerber | i1 = sum(energies < bias_window[0]) |
198 | 1 | tkerber | i2 = sum(energies < bias_window[1]) |
199 | 1 | tkerber | step = 1
|
200 | 1 | tkerber | if i2 < i1:
|
201 | 1 | tkerber | step = -1
|
202 | 1 | tkerber | |
203 | 1 | tkerber | return np.sign(bias)*np.trapz(x=energies[i1:i2:step], y=T_e[i1:i2:step])
|
204 | 1 | tkerber | |
205 | 1 | tkerber | |
206 | 1 | tkerber | |
207 | 1 | tkerber | |
208 | 1 | tkerber |