Statistiques
| Révision :

root / ase / test / hcp.py @ 1

Historique | Voir | Annoter | Télécharger (1,09 ko)

1 1 tkerber
try:
2 1 tkerber
    import scipy
3 1 tkerber
except ImportError:
4 1 tkerber
    from ase.test import NotAvailable
5 1 tkerber
    raise NotAvailable('This test needs scipy module.')
6 1 tkerber
7 1 tkerber
import numpy as np
8 1 tkerber
from ase.io import read, PickleTrajectory
9 1 tkerber
from ase.structure import bulk
10 1 tkerber
from ase.calculators.emt import EMT
11 1 tkerber
12 1 tkerber
a0 = 3.52 / np.sqrt(2)
13 1 tkerber
c0 = np.sqrt(8 / 3.0) * a0
14 1 tkerber
print '%.4f %.3f' % (a0, c0 / a0)
15 1 tkerber
for i in range(3):
16 1 tkerber
    traj = PickleTrajectory('Ni.traj', 'w')
17 1 tkerber
    eps = 0.01
18 1 tkerber
    for a in a0 * np.linspace(1 - eps, 1 + eps, 4):
19 1 tkerber
        for c in c0 * np.linspace(1 - eps, 1 + eps, 4):
20 1 tkerber
            ni = bulk('Ni', 'hcp', a=a, covera=c / a)
21 1 tkerber
            ni.set_calculator(EMT())
22 1 tkerber
            ni.get_potential_energy()
23 1 tkerber
            traj.write(ni)
24 1 tkerber
25 1 tkerber
    configs = read('Ni.traj@:')
26 1 tkerber
    energies = [config.get_potential_energy() for config in configs]
27 1 tkerber
    ac = [(config.cell[0, 0], config.cell[2, 2]) for config in configs]
28 1 tkerber
    from ase.optimize import polyfit
29 1 tkerber
    p = polyfit(ac, energies)
30 1 tkerber
    from scipy.optimize import fmin_bfgs
31 1 tkerber
    a0, c0 = fmin_bfgs(p, (a0, c0))
32 1 tkerber
    print '%.4f %.3f' % (a0, c0 / a0)
33 1 tkerber
assert abs(a0 - 2.469) < 0.001
34 1 tkerber
assert abs(c0 / a0 - 1.624) < 0.005
35 1 tkerber