root / ase / test / COCu111_2.py @ 1
Historique | Voir | Annoter | Télécharger (1,82 ko)
1 | 1 | tkerber | from math import sqrt |
---|---|---|---|
2 | 1 | tkerber | from ase import Atoms, Atom |
3 | 1 | tkerber | from ase.constraints import FixAtoms |
4 | 1 | tkerber | from ase.optimize import FIRE, QuasiNewton |
5 | 1 | tkerber | from ase.neb import SingleCalculatorNEB |
6 | 1 | tkerber | from ase.calculators.emt import EMT |
7 | 1 | tkerber | |
8 | 1 | tkerber | Optimizer=FIRE |
9 | 1 | tkerber | Optimizer=QuasiNewton |
10 | 1 | tkerber | |
11 | 1 | tkerber | # Distance between Cu atoms on a (111) surface:
|
12 | 1 | tkerber | a = 3.6
|
13 | 1 | tkerber | d = a / sqrt(2)
|
14 | 1 | tkerber | fcc111 = Atoms(symbols='Cu',
|
15 | 1 | tkerber | cell=[(d, 0, 0), |
16 | 1 | tkerber | (d / 2, d * sqrt(3) / 2, 0), |
17 | 1 | tkerber | (d / 2, d * sqrt(3) / 6, -a / sqrt(3))], |
18 | 1 | tkerber | pbc=True)
|
19 | 1 | tkerber | initial = fcc111 * (2, 2, 4) |
20 | 1 | tkerber | initial.set_cell([2 * d, d * sqrt(3), 1]) |
21 | 1 | tkerber | initial.set_pbc((1, 1, 0)) |
22 | 1 | tkerber | initial.set_calculator(EMT()) |
23 | 1 | tkerber | Z = initial.get_positions()[:, 2]
|
24 | 1 | tkerber | indices = [i for i, z in enumerate(Z) if z < Z.mean()] |
25 | 1 | tkerber | constraint = FixAtoms(indices=indices) |
26 | 1 | tkerber | initial.set_constraint(constraint) |
27 | 1 | tkerber | dyn = Optimizer(initial) |
28 | 1 | tkerber | dyn.run(fmax=0.05)
|
29 | 1 | tkerber | Z = initial.get_positions()[:, 2]
|
30 | 1 | tkerber | print Z[0] - Z[1] |
31 | 1 | tkerber | print Z[1] - Z[2] |
32 | 1 | tkerber | print Z[2] - Z[3] |
33 | 1 | tkerber | |
34 | 1 | tkerber | b = 1.2
|
35 | 1 | tkerber | h = 1.5
|
36 | 1 | tkerber | initial += Atom('C', (d / 2, -b / 2, h)) |
37 | 1 | tkerber | initial += Atom('O', (d / 2, +b / 2, h)) |
38 | 1 | tkerber | s = initial.copy() |
39 | 1 | tkerber | dyn = Optimizer(initial) |
40 | 1 | tkerber | dyn.run(fmax=0.05)
|
41 | 1 | tkerber | #view(initial)
|
42 | 1 | tkerber | |
43 | 1 | tkerber | # create final
|
44 | 1 | tkerber | final = initial.copy() |
45 | 1 | tkerber | final.set_calculator(EMT()) |
46 | 1 | tkerber | final.set_constraint(constraint) |
47 | 1 | tkerber | final[-2].position = final[-1].position |
48 | 1 | tkerber | final[-1].x = d
|
49 | 1 | tkerber | final[-1].y = d / sqrt(3) |
50 | 1 | tkerber | dyn = Optimizer(final) |
51 | 1 | tkerber | dyn.run(fmax=0.1)
|
52 | 1 | tkerber | #view(final)
|
53 | 1 | tkerber | |
54 | 1 | tkerber | # create 2 intermediate step neb
|
55 | 1 | tkerber | neb = SingleCalculatorNEB([initial, final]) |
56 | 1 | tkerber | neb.refine(2)
|
57 | 1 | tkerber | neb.set_calculators(EMT()) |
58 | 1 | tkerber | assert(neb.n() == 4) |
59 | 1 | tkerber | |
60 | 1 | tkerber | dyn = Optimizer(neb, maxstep=0.04, trajectory='mep_2coarse.traj') |
61 | 1 | tkerber | dyn.run(fmax=0.1)
|
62 | 1 | tkerber | #dyn.run(fmax=39.1)
|
63 | 1 | tkerber | |
64 | 1 | tkerber | # read from the trajectory
|
65 | 1 | tkerber | neb = SingleCalculatorNEB('mep_2coarse.traj@-4:')
|
66 | 1 | tkerber | |
67 | 1 | tkerber | # refine in the important region
|
68 | 1 | tkerber | neb.refine(2, 1, 3) |
69 | 1 | tkerber | neb.set_calculators(EMT()) |
70 | 1 | tkerber | dyn = Optimizer(neb, maxstep=0.04, trajectory='mep_2fine.traj') |
71 | 1 | tkerber | dyn.run(fmax=0.1)
|
72 | 1 | tkerber | assert(len(neb.images) == 8) |