root / ase / test / COCu111.py @ 1
Historique | Voir | Annoter | Télécharger (1,97 ko)
1 | 1 | tkerber | from math import sqrt |
---|---|---|---|
2 | 1 | tkerber | from ase import Atoms, Atom |
3 | 1 | tkerber | from ase.calculators.emt import EMT |
4 | 1 | tkerber | from ase.constraints import FixAtoms |
5 | 1 | tkerber | from ase.optimize import QuasiNewton |
6 | 1 | tkerber | from ase.neb import NEB |
7 | 1 | tkerber | |
8 | 1 | tkerber | # Distance between Cu atoms on a (111) surface:
|
9 | 1 | tkerber | a = 3.6
|
10 | 1 | tkerber | d = a / sqrt(2)
|
11 | 1 | tkerber | fcc111 = Atoms(symbols='Cu',
|
12 | 1 | tkerber | cell=[(d, 0, 0), |
13 | 1 | tkerber | (d / 2, d * sqrt(3) / 2, 0), |
14 | 1 | tkerber | (d / 2, d * sqrt(3) / 6, -a / sqrt(3))], |
15 | 1 | tkerber | pbc=True)
|
16 | 1 | tkerber | slab = fcc111 * (2, 2, 4) |
17 | 1 | tkerber | slab.set_cell([2 * d, d * sqrt(3), 1]) |
18 | 1 | tkerber | slab.set_pbc((1, 1, 0)) |
19 | 1 | tkerber | slab.set_calculator(EMT()) |
20 | 1 | tkerber | Z = slab.get_positions()[:, 2]
|
21 | 1 | tkerber | indices = [i for i, z in enumerate(Z) if z < Z.mean()] |
22 | 1 | tkerber | constraint = FixAtoms(indices=indices) |
23 | 1 | tkerber | slab.set_constraint(constraint) |
24 | 1 | tkerber | dyn = QuasiNewton(slab) |
25 | 1 | tkerber | dyn.run(fmax=0.05)
|
26 | 1 | tkerber | Z = slab.get_positions()[:, 2]
|
27 | 1 | tkerber | print Z[0] - Z[1] |
28 | 1 | tkerber | print Z[1] - Z[2] |
29 | 1 | tkerber | print Z[2] - Z[3] |
30 | 1 | tkerber | |
31 | 1 | tkerber | b = 1.2
|
32 | 1 | tkerber | h = 1.5
|
33 | 1 | tkerber | slab += Atom('C', (d / 2, -b / 2, h)) |
34 | 1 | tkerber | slab += Atom('O', (d / 2, +b / 2, h)) |
35 | 1 | tkerber | s = slab.copy() |
36 | 1 | tkerber | dyn = QuasiNewton(slab) |
37 | 1 | tkerber | dyn.run(fmax=0.05)
|
38 | 1 | tkerber | #view(slab)
|
39 | 1 | tkerber | |
40 | 1 | tkerber | # Make band:
|
41 | 1 | tkerber | images = [slab] |
42 | 1 | tkerber | for i in range(6): |
43 | 1 | tkerber | image = slab.copy() |
44 | 1 | tkerber | image.set_constraint(constraint) |
45 | 1 | tkerber | image.set_calculator(EMT()) |
46 | 1 | tkerber | images.append(image) |
47 | 1 | tkerber | image[-2].position = image[-1].position |
48 | 1 | tkerber | image[-1].x = d
|
49 | 1 | tkerber | image[-1].y = d / sqrt(3) |
50 | 1 | tkerber | dyn = QuasiNewton(images[-1])
|
51 | 1 | tkerber | dyn.run(fmax=0.05)
|
52 | 1 | tkerber | neb = NEB(images, climb=not True) |
53 | 1 | tkerber | |
54 | 1 | tkerber | # Set constraints and calculator:
|
55 | 1 | tkerber | |
56 | 1 | tkerber | # Displace last image:
|
57 | 1 | tkerber | |
58 | 1 | tkerber | # Relax height of Ag atom for initial and final states:
|
59 | 1 | tkerber | |
60 | 1 | tkerber | # Interpolate positions between initial and final states:
|
61 | 1 | tkerber | neb.interpolate() |
62 | 1 | tkerber | |
63 | 1 | tkerber | for image in images: |
64 | 1 | tkerber | print image.positions[-1], image.get_potential_energy() |
65 | 1 | tkerber | |
66 | 1 | tkerber | #dyn = MDMin(neb, dt=0.4)
|
67 | 1 | tkerber | #dyn = FIRE(neb, dt=0.01)
|
68 | 1 | tkerber | dyn = QuasiNewton(neb, maxstep=0.04, trajectory='mep.traj') |
69 | 1 | tkerber | #from ase.optimize.oldqn import GoodOldQuasiNewton
|
70 | 1 | tkerber | #dyn = GoodOldQuasiNewton(neb)
|
71 | 1 | tkerber | dyn.run(fmax=0.05)
|
72 | 1 | tkerber | |
73 | 1 | tkerber | for image in images: |
74 | 1 | tkerber | print image.positions[-1], image.get_potential_energy() |
75 | 1 | tkerber | |
76 | 1 | tkerber | if display:
|
77 | 1 | tkerber | import os |
78 | 1 | tkerber | error = os.system('ag mep.traj@-7:')
|
79 | 1 | tkerber | assert error == 0 |