root / ase / examples / COCu111.py @ 1
Historique | Voir | Annoter | Télécharger (1,87 ko)
1 | 1 | tkerber | from math import sqrt |
---|---|---|---|
2 | 1 | tkerber | from ase import Atoms, Atom |
3 | 1 | tkerber | from ase.constraints import FixAtoms |
4 | 1 | tkerber | from ase.optimize import QuasiNewton |
5 | 1 | tkerber | from ase.io import PickleTrajectory |
6 | 1 | tkerber | from ase.neb import NEB |
7 | 1 | tkerber | from ase.calculators.emt import EMT |
8 | 1 | tkerber | |
9 | 1 | tkerber | # Distance between Cu atoms on a (111) surface:
|
10 | 1 | tkerber | a = 3.6
|
11 | 1 | tkerber | d = a / sqrt(2)
|
12 | 1 | tkerber | y = d * sqrt(3) / 2 |
13 | 1 | tkerber | fcc111 = Atoms('Cu',
|
14 | 1 | tkerber | cell=[(d, 0, 0), |
15 | 1 | tkerber | (d / 2, y, 0), |
16 | 1 | tkerber | (d / 2, y / 3, -a / sqrt(3))], |
17 | 1 | tkerber | pbc=True)
|
18 | 1 | tkerber | slab = fcc111 * (2, 2, 4) |
19 | 1 | tkerber | slab.set_cell([2 * d, 2 * y, 1]) |
20 | 1 | tkerber | slab.set_pbc((1, 1, 0)) |
21 | 1 | tkerber | slab.set_calculator(EMT()) |
22 | 1 | tkerber | Z = slab.get_positions()[:, 2]
|
23 | 1 | tkerber | indices = [i for i, z in enumerate(Z) if z < Z.mean()] |
24 | 1 | tkerber | constraint = FixAtoms(indices=indices) |
25 | 1 | tkerber | slab.set_constraint(constraint) |
26 | 1 | tkerber | dyn = QuasiNewton(slab) |
27 | 1 | tkerber | dyn.run(fmax=0.05)
|
28 | 1 | tkerber | Z = slab.get_positions()[:, 2]
|
29 | 1 | tkerber | print Z[0] - Z[1] |
30 | 1 | tkerber | print Z[1] - Z[2] |
31 | 1 | tkerber | print Z[2] - Z[3] |
32 | 1 | tkerber | |
33 | 1 | tkerber | b = 1.2
|
34 | 1 | tkerber | h = 2.0
|
35 | 1 | tkerber | slab += Atom('C', (d, 2 * y / 3, h)) |
36 | 1 | tkerber | slab += Atom('O', (3 * d / 2, y / 3, h)) |
37 | 1 | tkerber | traj = PickleTrajectory('initial.traj', 'w', slab) |
38 | 1 | tkerber | dyn = QuasiNewton(slab) |
39 | 1 | tkerber | dyn.attach(traj.write) |
40 | 1 | tkerber | dyn.run(fmax=0.05)
|
41 | 1 | tkerber | #view(slab)
|
42 | 1 | tkerber | # Make band:
|
43 | 1 | tkerber | images = [slab.copy() for i in range(6)] |
44 | 1 | tkerber | neb = NEB(images, climb=True)
|
45 | 1 | tkerber | |
46 | 1 | tkerber | # Set constraints and calculator:
|
47 | 1 | tkerber | for image in images: |
48 | 1 | tkerber | image.set_calculator(EMT()) |
49 | 1 | tkerber | image.set_constraint(constraint) |
50 | 1 | tkerber | |
51 | 1 | tkerber | # Displace last image:
|
52 | 1 | tkerber | images[-1].positions[-1] = (2 * d, 2 * y / 3, h) |
53 | 1 | tkerber | traj = PickleTrajectory('final.traj', 'w', images[-1]) |
54 | 1 | tkerber | dyn = QuasiNewton(images[-1])
|
55 | 1 | tkerber | dyn.attach(traj.write) |
56 | 1 | tkerber | dyn.run(fmax=0.05)
|
57 | 1 | tkerber | |
58 | 1 | tkerber | # Interpolate positions between initial and final states:
|
59 | 1 | tkerber | neb.interpolate() |
60 | 1 | tkerber | |
61 | 1 | tkerber | for image in images: |
62 | 1 | tkerber | print image.positions[-1], image.get_potential_energy() |
63 | 1 | tkerber | |
64 | 1 | tkerber | traj = PickleTrajectory('mep.traj', 'w') |
65 | 1 | tkerber | |
66 | 1 | tkerber | #dyn = MDMin(neb, dt=0.4)
|
67 | 1 | tkerber | #dyn = FIRE(neb, dt=0.4)
|
68 | 1 | tkerber | dyn = QuasiNewton(neb) |
69 | 1 | tkerber | dyn.attach(neb.writer(traj)) |
70 | 1 | tkerber | dyn.run(fmax=0.05)
|
71 | 1 | tkerber | |
72 | 1 | tkerber | for image in images: |
73 | 1 | tkerber | print image.positions[-1], image.get_potential_energy() |