Statistiques
| Révision :

root / ase / optimize / basin.py

Historique | Voir | Annoter | Télécharger (3,84 ko)

1
import numpy as np
2

    
3
from ase.optimize.optimize import Dynamics
4
from ase.optimize.fire import FIRE
5
from ase.units import kB
6
from ase.parallel import world
7
from ase.io.trajectory import PickleTrajectory
8

    
9
class BasinHopping(Dynamics):
10
    """Basin hopping algorythm.
11

12
    After Wales and Doye, J. Phys. Chem. A, vol 101 (1997) 5111-5116"""
13

    
14
    def __init__(self, atoms,
15
                 temperature=100 * kB,
16
                 optimizer=FIRE,
17
                 fmax=0.1,
18
                 dr=.1,
19
                 logfile='-', 
20
                 trajectory='lowest.traj',
21
                 optimizer_logfile='-',
22
                 local_minima_trajectory='local_minima.traj',
23
                 adjust_cm=True):
24
        Dynamics.__init__(self, atoms, logfile, trajectory)
25
        self.kT = temperature
26
        self.optimizer = optimizer
27
        self.fmax = fmax
28
        self.dr = dr
29
        if adjust_cm:
30
            self.cm = atoms.get_center_of_mass()
31
        else:
32
            self.cm = None
33

    
34
        self.optimizer_logfile = optimizer_logfile
35
        self.lm_trajectory = local_minima_trajectory
36
        if isinstance(local_minima_trajectory, str):
37
            self.lm_trajectory = PickleTrajectory(local_minima_trajectory,
38
                                                  'w', atoms)
39

    
40
        self.initialize()
41

    
42
    def initialize(self):
43
        self.positions = 0. * self.atoms.get_positions()
44
        self.Emin = self.get_energy(self.atoms.get_positions())
45
        self.rmin = self.atoms.get_positions()
46
        self.positions = self.atoms.get_positions()
47
        self.call_observers()
48
        self.log(-1, self.Emin, self.Emin)
49
                
50
    def run(self, steps):
51
        """Hop the basins for defined number of steps."""
52

    
53
        ro = self.positions
54
        Eo = self.get_energy(ro)
55
 
56
        for step in range(steps):
57
            rn = self.move(ro)
58
            En = self.get_energy(rn)
59

    
60
            if En < self.Emin:
61
                # new minimum found
62
                self.Emin = En
63
                self.rmin = self.atoms.get_positions()
64
                self.call_observers()
65
                rn = self.rmin
66
            self.log(step, En, self.Emin)
67

    
68
            accept = np.exp((Eo - En) / self.kT) > np.random.uniform()
69
            if accept:
70
                ro = rn
71
                Eo = En
72

    
73
    def log(self, step, En, Emin):
74
        if self.logfile is None:
75
            return
76
        name = self.__class__.__name__
77
        self.logfile.write('%s: step %d, energy %15.6f, emin %15.6f\n'
78
                           % (name, step, En, self.Emin))
79
        self.logfile.flush()
80

    
81
    def move(self, ro):
82
        atoms = self.atoms
83
        # displace coordinates
84
        disp = np.random.uniform(-1., 1., (len(atoms), 3))
85
        rn = ro + self.dr * disp
86
        atoms.set_positions(rn)
87
        if self.cm is not None:
88
            cm = atoms.get_center_of_mass()
89
            atoms.translate(self.cm - cm)
90
        rn = atoms.get_positions()
91
        if world is not None:
92
            world.broadcast(rn, 0)
93
        atoms.set_positions(rn)
94
        return atoms.get_positions()
95

    
96
    def get_minimum(self):
97
        atoms = self.atoms.copy()
98
        atoms.set_positions(self.rmin)
99
        return self.Emin, atoms
100

    
101
    def get_energy(self, positions):
102
        """Return the energy of the nearest local minimum."""
103
        if np.sometrue(self.positions != positions):
104
            self.positions = positions
105
            self.atoms.set_positions(positions)
106
 
107
            try:
108
                opt = self.optimizer(self.atoms, logfile=self.optimizer_logfile)
109
                opt.run(fmax=self.fmax)
110
                if self.lm_trajectory is not None:
111
                    self.lm_trajectory.write(self.atoms)
112

    
113
                self.energy = self.atoms.get_potential_energy()
114
            except:
115
                # the atoms are probably to near to each other
116
                self.energy = 1.e32
117
            
118
        return self.energy
119