root / ase / utils / __init__.py
Historique | Voir | Annoter | Télécharger (3,34 ko)
1 | 1 | tkerber | from math import sin, cos, radians, atan2, degrees |
---|---|---|---|
2 | 1 | tkerber | |
3 | 1 | tkerber | import numpy as np |
4 | 1 | tkerber | |
5 | 1 | tkerber | |
6 | 1 | tkerber | class DevNull: |
7 | 1 | tkerber | def write(self, string): pass |
8 | 1 | tkerber | def flush(self): pass |
9 | 1 | tkerber | def tell(self): return 0 |
10 | 1 | tkerber | def close(self): pass |
11 | 1 | tkerber | |
12 | 1 | tkerber | devnull = DevNull() |
13 | 1 | tkerber | |
14 | 1 | tkerber | |
15 | 1 | tkerber | def rotate(rotations, rotation=np.identity(3)): |
16 | 1 | tkerber | """Convert string of format '50x,-10y,120z' to a rotation matrix.
|
17 | 1 | tkerber |
|
18 | 1 | tkerber | Note that the order of rotation matters, i.e. '50x,40z' is different
|
19 | 1 | tkerber | from '40z,50x'.
|
20 | 1 | tkerber | """
|
21 | 1 | tkerber | |
22 | 1 | tkerber | if rotations == '': |
23 | 1 | tkerber | return rotation.copy()
|
24 | 1 | tkerber | |
25 | 1 | tkerber | for i, a in [('xyz'.index(s[-1]), radians(float(s[:-1]))) |
26 | 1 | tkerber | for s in rotations.split(',')]: |
27 | 1 | tkerber | s = sin(a) |
28 | 1 | tkerber | c = cos(a) |
29 | 1 | tkerber | if i == 0: |
30 | 1 | tkerber | rotation = np.dot(rotation, [( 1, 0, 0), |
31 | 1 | tkerber | ( 0, c, s),
|
32 | 1 | tkerber | ( 0, -s, c)])
|
33 | 1 | tkerber | elif i == 1: |
34 | 1 | tkerber | rotation = np.dot(rotation, [( c, 0, -s),
|
35 | 1 | tkerber | ( 0, 1, 0), |
36 | 1 | tkerber | ( s, 0, c)])
|
37 | 1 | tkerber | else:
|
38 | 1 | tkerber | rotation = np.dot(rotation, [( c, s, 0),
|
39 | 1 | tkerber | ( -s, c, 0),
|
40 | 1 | tkerber | ( 0, 0, 1)]) |
41 | 1 | tkerber | return rotation
|
42 | 1 | tkerber | |
43 | 1 | tkerber | |
44 | 1 | tkerber | def givens(a, b): |
45 | 1 | tkerber | """Solve the equation system::
|
46 | 1 | tkerber |
|
47 | 1 | tkerber | [ c s] [a] [r]
|
48 | 1 | tkerber | [ ] . [ ] = [ ]
|
49 | 1 | tkerber | [-s c] [b] [0]
|
50 | 1 | tkerber | """
|
51 | 1 | tkerber | sgn = lambda x: cmp(x, 0) |
52 | 1 | tkerber | if b == 0: |
53 | 1 | tkerber | c = sgn(a) |
54 | 1 | tkerber | s = 0
|
55 | 1 | tkerber | r = abs(a)
|
56 | 1 | tkerber | elif abs(b) >= abs(a): |
57 | 1 | tkerber | cot = a / b |
58 | 1 | tkerber | u = sgn(b) * (1 + cot**2)**.5 |
59 | 1 | tkerber | s = 1. / u
|
60 | 1 | tkerber | c = s * cot |
61 | 1 | tkerber | r = b * u |
62 | 1 | tkerber | else:
|
63 | 1 | tkerber | tan = b / a |
64 | 1 | tkerber | u = sgn(a) * (1 + tan**2)**.5 |
65 | 1 | tkerber | c = 1. / u
|
66 | 1 | tkerber | s = c * tan |
67 | 1 | tkerber | r = a * u |
68 | 1 | tkerber | return c, s, r
|
69 | 1 | tkerber | |
70 | 1 | tkerber | |
71 | 1 | tkerber | def irotate(rotation, initial=np.identity(3)): |
72 | 1 | tkerber | """Determine x, y, z rotation angles from rotation matrix."""
|
73 | 1 | tkerber | a = np.dot(initial, rotation) |
74 | 1 | tkerber | cx, sx, rx = givens(a[2, 2], a[1, 2]) |
75 | 1 | tkerber | cy, sy, ry = givens(rx, a[0, 2]) |
76 | 1 | tkerber | cz, sz, rz = givens(cx * a[1, 1] - sx * a[2, 1], |
77 | 1 | tkerber | cy * a[0, 1] - sy * (sx * a[1, 1] + cx * a[2, 1])) |
78 | 1 | tkerber | x = degrees(atan2(sx, cx)) |
79 | 1 | tkerber | y = degrees(atan2(-sy, cy)) |
80 | 1 | tkerber | z = degrees(atan2(sz, cz)) |
81 | 1 | tkerber | return x, y, z
|
82 | 1 | tkerber | |
83 | 1 | tkerber | |
84 | 1 | tkerber | def hsv2rgb(h, s, v): |
85 | 1 | tkerber | """http://en.wikipedia.org/wiki/HSL_and_HSV
|
86 | 1 | tkerber |
|
87 | 1 | tkerber | h (hue) in [0, 360[
|
88 | 1 | tkerber | s (saturation) in [0, 1]
|
89 | 1 | tkerber | v (value) in [0, 1]
|
90 | 1 | tkerber |
|
91 | 1 | tkerber | return rgb in range [0, 1]
|
92 | 1 | tkerber | """
|
93 | 1 | tkerber | if v == 0: |
94 | 1 | tkerber | return 0, 0, 0 |
95 | 1 | tkerber | if s == 0: |
96 | 1 | tkerber | return v, v, v
|
97 | 1 | tkerber | |
98 | 1 | tkerber | i, f = divmod(h / 60., 1) |
99 | 1 | tkerber | p = v * (1 - s)
|
100 | 1 | tkerber | q = v * (1 - s * f)
|
101 | 1 | tkerber | t = v * (1 - s * (1 - f)) |
102 | 1 | tkerber | |
103 | 1 | tkerber | if i == 0: |
104 | 1 | tkerber | return v, t, p
|
105 | 1 | tkerber | elif i == 1: |
106 | 1 | tkerber | return q, v, p
|
107 | 1 | tkerber | elif i == 2: |
108 | 1 | tkerber | return p, v, t
|
109 | 1 | tkerber | elif i == 3: |
110 | 1 | tkerber | return p, q, v
|
111 | 1 | tkerber | elif i == 4: |
112 | 1 | tkerber | return t, p, v
|
113 | 1 | tkerber | elif i == 5: |
114 | 1 | tkerber | return v, p, q
|
115 | 1 | tkerber | else:
|
116 | 1 | tkerber | raise RuntimeError, 'h must be in [0, 360]' |
117 | 1 | tkerber | |
118 | 1 | tkerber | |
119 | 1 | tkerber | def hsv(array, s=.9, v=.9): |
120 | 1 | tkerber | array = (array + array.min()) * 359. / (array.max() - array.min())
|
121 | 1 | tkerber | result = np.empty((len(array.flat), 3)) |
122 | 1 | tkerber | for rgb, h in zip(result, array.flat): |
123 | 1 | tkerber | rgb[:] = hsv2rgb(h, s, v) |
124 | 1 | tkerber | return np.reshape(result, array.shape + (3,)) |
125 | 1 | tkerber | |
126 | 1 | tkerber | ## This code does the same, but requires pylab
|
127 | 1 | tkerber | ## def cmap(array, name='hsv'):
|
128 | 1 | tkerber | ## import pylab
|
129 | 1 | tkerber | ## a = (array + array.min()) / array.ptp()
|
130 | 1 | tkerber | ## rgba = getattr(pylab.cm, name)(a)
|
131 | 1 | tkerber | ## return rgba[:-1] # return rgb only (not alpha) |