root / ase / md / nvtberendsen.py
Historique | Voir | Annoter | Télécharger (3,32 ko)
1 | 1 | tkerber | """Berendsen NVT dynamics class."""
|
---|---|---|---|
2 | 1 | tkerber | |
3 | 1 | tkerber | import sys |
4 | 1 | tkerber | import numpy as np |
5 | 1 | tkerber | from ase.md.md import MolecularDynamics |
6 | 1 | tkerber | |
7 | 1 | tkerber | |
8 | 1 | tkerber | # For parallel GPAW simulations, the random forces should be distributed.
|
9 | 1 | tkerber | if '_gpaw' in sys.modules: |
10 | 1 | tkerber | # http://wiki.fysik.dtu.dk/gpaw
|
11 | 1 | tkerber | from gpaw.mpi import world as gpaw_world |
12 | 1 | tkerber | else:
|
13 | 1 | tkerber | gpaw_world = None
|
14 | 1 | tkerber | |
15 | 1 | tkerber | |
16 | 1 | tkerber | class NVTBerendsen(MolecularDynamics): |
17 | 1 | tkerber | """Berendsen (constant N, V, T) molecular dynamics.
|
18 | 1 | tkerber |
|
19 | 1 | tkerber | Usage: NVTBerendsen(atoms, timestep, temperature, taut, fixcm)
|
20 | 1 | tkerber |
|
21 | 1 | tkerber | atoms
|
22 | 1 | tkerber | The list of atoms.
|
23 | 1 | tkerber |
|
24 | 1 | tkerber | timestep
|
25 | 1 | tkerber | The time step.
|
26 | 1 | tkerber |
|
27 | 1 | tkerber | temperature
|
28 | 1 | tkerber | The desired temperature, in Kelvin.
|
29 | 1 | tkerber |
|
30 | 1 | tkerber | taut
|
31 | 1 | tkerber | Time constant for Berendsen temperature coupling.
|
32 | 1 | tkerber |
|
33 | 1 | tkerber | fixcm
|
34 | 1 | tkerber | If True, the position and momentum of the center of mass is
|
35 | 1 | tkerber | kept unperturbed. Default: True.
|
36 | 1 | tkerber |
|
37 | 1 | tkerber | """
|
38 | 1 | tkerber | |
39 | 1 | tkerber | def __init__(self, atoms, timestep, temperature, taut, fixcm=True, |
40 | 1 | tkerber | trajectory=None, logfile=None, loginterval=1, |
41 | 1 | tkerber | communicator=gpaw_world): |
42 | 1 | tkerber | |
43 | 1 | tkerber | MolecularDynamics.__init__(self, atoms, timestep, trajectory,
|
44 | 1 | tkerber | logfile, loginterval) |
45 | 1 | tkerber | self.taut = taut
|
46 | 1 | tkerber | self.temperature = temperature
|
47 | 1 | tkerber | self.fixcm = fixcm # will the center of mass be held fixed? |
48 | 1 | tkerber | self.communicator = communicator
|
49 | 1 | tkerber | |
50 | 1 | tkerber | def set_taut(self, taut): |
51 | 1 | tkerber | self.taut = taut
|
52 | 1 | tkerber | |
53 | 1 | tkerber | def get_taut(self): |
54 | 1 | tkerber | return self.taut |
55 | 1 | tkerber | |
56 | 1 | tkerber | def set_temperature(self, temperature): |
57 | 1 | tkerber | self.temperature = temperature
|
58 | 1 | tkerber | |
59 | 1 | tkerber | def get_temperature(self): |
60 | 1 | tkerber | return self.temperature |
61 | 1 | tkerber | |
62 | 1 | tkerber | def set_timestep(self, timestep): |
63 | 1 | tkerber | self.dt = timestep
|
64 | 1 | tkerber | |
65 | 1 | tkerber | def get_timestep(self): |
66 | 1 | tkerber | return self.dt |
67 | 1 | tkerber | |
68 | 1 | tkerber | def scale_velocities(self): |
69 | 1 | tkerber | """ Do the NVT Berendsen velocity scaling """
|
70 | 1 | tkerber | tautscl = self.dt / self.taut |
71 | 1 | tkerber | old_temperature = self.atoms.get_temperature()
|
72 | 1 | tkerber | |
73 | 1 | tkerber | scl_temperature = np.sqrt(1.0+ (self.temperature/ old_temperature- 1.0) |
74 | 1 | tkerber | *tautscl) |
75 | 1 | tkerber | #limit the velocity scaling to reasonable values
|
76 | 1 | tkerber | if scl_temperature > 1.1: |
77 | 1 | tkerber | scl_temperature = 1.1
|
78 | 1 | tkerber | if scl_temperature < 0.9: |
79 | 1 | tkerber | scl_temperature = 0.9
|
80 | 1 | tkerber | |
81 | 1 | tkerber | atoms = self.atoms
|
82 | 1 | tkerber | p = self.atoms.get_momenta()
|
83 | 1 | tkerber | p = scl_temperature * p |
84 | 1 | tkerber | self.atoms.set_momenta(p)
|
85 | 1 | tkerber | return
|
86 | 1 | tkerber | |
87 | 1 | tkerber | |
88 | 1 | tkerber | def step(self, f): |
89 | 1 | tkerber | """ move one timestep forward using Berenden NVT molecular dynamics."""
|
90 | 1 | tkerber | self.scale_velocities()
|
91 | 1 | tkerber | |
92 | 1 | tkerber | #one step velocity verlet
|
93 | 1 | tkerber | atoms = self.atoms
|
94 | 1 | tkerber | p = self.atoms.get_momenta()
|
95 | 1 | tkerber | p += 0.5 * self.dt * f |
96 | 1 | tkerber | |
97 | 1 | tkerber | if self.fixcm: |
98 | 1 | tkerber | # calculate the center of mass
|
99 | 1 | tkerber | # momentum and subtract it
|
100 | 1 | tkerber | psum = p.sum(axis=0) / float(len(p)) |
101 | 1 | tkerber | p = p - psum |
102 | 1 | tkerber | |
103 | 1 | tkerber | self.atoms.set_positions(self.atoms.get_positions() + |
104 | 1 | tkerber | self.dt * p / self.atoms.get_masses()[:,np.newaxis]) |
105 | 1 | tkerber | |
106 | 1 | tkerber | # We need to store the momenta on the atoms before calculating
|
107 | 1 | tkerber | # the forces, as in a parallel Asap calculation atoms may
|
108 | 1 | tkerber | # migrate during force calculations, and the momenta need to
|
109 | 1 | tkerber | # migrate along with the atoms. For the same reason, we
|
110 | 1 | tkerber | # cannot use self.masses in the line above.
|
111 | 1 | tkerber | |
112 | 1 | tkerber | self.atoms.set_momenta(p)
|
113 | 1 | tkerber | f = self.atoms.get_forces()
|
114 | 1 | tkerber | atoms.set_momenta(self.atoms.get_momenta() + 0.5 * self.dt * f) |
115 | 1 | tkerber | |
116 | 1 | tkerber | return f
|