root / ase / lattice / triclinic.py
Historique | Voir | Annoter | Télécharger (3,15 ko)
1 | 1 | tkerber | """Function-like object creating triclinic lattices.
|
---|---|---|---|
2 | 1 | tkerber |
|
3 | 1 | tkerber | The following lattice creator is defined:
|
4 | 1 | tkerber | Triclinic
|
5 | 1 | tkerber | """
|
6 | 1 | tkerber | |
7 | 1 | tkerber | from ase.lattice.bravais import Bravais |
8 | 1 | tkerber | import numpy as np |
9 | 1 | tkerber | from ase.data import reference_states as _refstate |
10 | 1 | tkerber | |
11 | 1 | tkerber | class TriclinicFactory(Bravais): |
12 | 1 | tkerber | "A factory for creating triclinic lattices."
|
13 | 1 | tkerber | |
14 | 1 | tkerber | # The name of the crystal structure in ChemicalElements
|
15 | 1 | tkerber | xtal_name = "triclinic"
|
16 | 1 | tkerber | |
17 | 1 | tkerber | # The natural basis vectors of the crystal structure
|
18 | 1 | tkerber | int_basis = np.array([[1, 0, 0], |
19 | 1 | tkerber | [0, 1, 0], |
20 | 1 | tkerber | [0, 0, 1]]) |
21 | 1 | tkerber | basis_factor = 1.0
|
22 | 1 | tkerber | |
23 | 1 | tkerber | # Converts the natural basis back to the crystallographic basis
|
24 | 1 | tkerber | inverse_basis = np.array([[1, 0, 0], |
25 | 1 | tkerber | [0, 1, 0], |
26 | 1 | tkerber | [0, 0, 1]]) |
27 | 1 | tkerber | inverse_basis_factor = 1.0
|
28 | 1 | tkerber | |
29 | 1 | tkerber | def get_lattice_constant(self): |
30 | 1 | tkerber | "Get the lattice constant of an element with triclinic crystal structure."
|
31 | 1 | tkerber | if _refstate[self.atomicnumber]['symmetry'].lower() != self.xtal_name: |
32 | 1 | tkerber | raise ValueError, (("Cannot guess the %s lattice constant of" |
33 | 1 | tkerber | + " an element with crystal structure %s.")
|
34 | 1 | tkerber | % (self.xtal_name,
|
35 | 1 | tkerber | _refstate[self.atomicnumber]['symmetry'])) |
36 | 1 | tkerber | return _refstate[self.atomicnumber].copy() |
37 | 1 | tkerber | |
38 | 1 | tkerber | |
39 | 1 | tkerber | def make_crystal_basis(self): |
40 | 1 | tkerber | "Make the basis matrix for the crystal unit cell and the system unit cell."
|
41 | 1 | tkerber | lattice = self.latticeconstant
|
42 | 1 | tkerber | if type(lattice) == type({}): |
43 | 1 | tkerber | a = lattice['a']
|
44 | 1 | tkerber | try:
|
45 | 1 | tkerber | b = lattice['b']
|
46 | 1 | tkerber | except KeyError: |
47 | 1 | tkerber | b = a * lattice['b/a']
|
48 | 1 | tkerber | try:
|
49 | 1 | tkerber | c = lattice['c']
|
50 | 1 | tkerber | except KeyError: |
51 | 1 | tkerber | c = a * lattice['c/a']
|
52 | 1 | tkerber | alpha = lattice['alpha']
|
53 | 1 | tkerber | beta = lattice['beta']
|
54 | 1 | tkerber | gamma = lattice['gamma']
|
55 | 1 | tkerber | else:
|
56 | 1 | tkerber | if len(lattice) == 6: |
57 | 1 | tkerber | (a,b,c,alpha,beta,gamma) = lattice |
58 | 1 | tkerber | else:
|
59 | 1 | tkerber | raise ValueError, "Improper lattice constants for triclinic crystal." |
60 | 1 | tkerber | |
61 | 1 | tkerber | degree = np.pi / 180.0
|
62 | 1 | tkerber | cosa = np.cos(alpha*degree) |
63 | 1 | tkerber | cosb = np.cos(beta*degree) |
64 | 1 | tkerber | sinb = np.sin(beta*degree) |
65 | 1 | tkerber | cosg = np.cos(gamma*degree) |
66 | 1 | tkerber | sing = np.sin(gamma*degree) |
67 | 1 | tkerber | lattice = np.array([[a,0,0], |
68 | 1 | tkerber | [b*cosg, b*sing,0],
|
69 | 1 | tkerber | [c*cosb, c*(cosa-cosb*cosg)/sing, |
70 | 1 | tkerber | c*np.sqrt(sinb**2 - ((cosa-cosb*cosg)/sing)**2)]]) |
71 | 1 | tkerber | self.latticeconstant = lattice
|
72 | 1 | tkerber | self.miller_basis = lattice
|
73 | 1 | tkerber | self.crystal_basis = (self.basis_factor * |
74 | 1 | tkerber | np.dot(self.int_basis, lattice))
|
75 | 1 | tkerber | self.basis = np.dot(self.directions, self.crystal_basis) |
76 | 1 | tkerber | assert abs(np.dot(lattice[0],lattice[1]) - a*b*cosg) < 1e-5 |
77 | 1 | tkerber | assert abs(np.dot(lattice[0],lattice[2]) - a*c*cosb) < 1e-5 |
78 | 1 | tkerber | assert abs(np.dot(lattice[1],lattice[2]) - b*c*cosa) < 1e-5 |
79 | 1 | tkerber | assert abs(np.dot(lattice[0],lattice[0]) - a*a) < 1e-5 |
80 | 1 | tkerber | assert abs(np.dot(lattice[1],lattice[1]) - b*b) < 1e-5 |
81 | 1 | tkerber | assert abs(np.dot(lattice[2],lattice[2]) - c*c) < 1e-5 |
82 | 1 | tkerber | |
83 | 1 | tkerber | Triclinic = TriclinicFactory() |