root / pobysoPythonSage / src / sageSLZ / sageSLZ.sage @ 99
Historique | Voir | Annoter | Télécharger (21,69 ko)
1 |
""" |
---|---|
2 |
module:: sageSLZ.sage |
3 |
|
4 |
Sage core function needed for the implementation of SLZ. |
5 |
|
6 |
Created on 2013-08 |
7 |
|
8 |
moduleauthor:: S.T. |
9 |
""" |
10 |
print "sageSLZ loading..." |
11 |
def slz_compute_polynomial_and_interval(functionSo, degreeSo, lowerBoundSa, |
12 |
upperBoundSa, approxPrecSa, |
13 |
sollyaPrecSa=None): |
14 |
""" |
15 |
Under the assumptions listed for slz_get_intervals_and_polynomials, compute |
16 |
a polynomial that approximates the function on a an interval starting |
17 |
at lowerBoundSa and finishing at a value that guarantees that the polynomial |
18 |
approximates with the expected precision. |
19 |
The interval upper bound is lowered until the expected approximation |
20 |
precision is reached. |
21 |
The polynomial, the bounds, the center of the interval and the error |
22 |
are returned. |
23 |
""" |
24 |
RRR = lowerBoundSa.parent() |
25 |
intervalShrinkConstFactorSa = RRR('0.5') |
26 |
absoluteErrorTypeSo = pobyso_absolute_so_so() |
27 |
currentRangeSo = pobyso_bounds_to_range_sa_so(lowerBoundSa, upperBoundSa) |
28 |
currentUpperBoundSa = upperBoundSa |
29 |
currentLowerBoundSa = lowerBoundSa |
30 |
# What we want here is the polynomial without the variable change, |
31 |
# since our actual variable will be x-intervalCenter defined over the |
32 |
# domain [lowerBound-intervalCenter , upperBound-intervalCenter]. |
33 |
(polySo, intervalCenterSo, maxErrorSo) = \ |
34 |
pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
35 |
currentRangeSo, |
36 |
absoluteErrorTypeSo) |
37 |
maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
38 |
while maxErrorSa > approxPrecSa: |
39 |
sollya_lib_clear_obj(maxErrorSo) |
40 |
sollya_lib_clear_obj(polySo) |
41 |
sollya_lib_clear_obj(intervalCenterSo) |
42 |
shrinkFactorSa = RRR('5.0')/(maxErrorSa/approxPrecSa).log2().abs() |
43 |
#shrinkFactorSa = 1.5/(maxErrorSa/approxPrecSa) |
44 |
#errorRatioSa = approxPrecSa/maxErrorSa |
45 |
#print "Error ratio: ", errorRatioSa |
46 |
|
47 |
if shrinkFactorSa > intervalShrinkConstFactorSa: |
48 |
actualShrinkFactorSa = intervalShrinkConstFactorSa |
49 |
#print "Fixed" |
50 |
else: |
51 |
actualShrinkFactorSa = shrinkFactorSa |
52 |
#print "Computed",shrinkFactorSa,maxErrorSa |
53 |
#print shrinkFactorSa, maxErrorSa |
54 |
currentUpperBoundSa = currentLowerBoundSa + \ |
55 |
(currentUpperBoundSa - currentLowerBoundSa) * \ |
56 |
actualShrinkFactorSa |
57 |
#print "Current upper bound:", currentUpperBoundSa |
58 |
sollya_lib_clear_obj(currentRangeSo) |
59 |
sollya_lib_clear_obj(polySo) |
60 |
if currentUpperBoundSa <= currentLowerBoundSa: |
61 |
sollya_lib_clear_obj(absoluteErrorTypeSo) |
62 |
print "Can't find an interval." |
63 |
print "Use either or both a higher polynomial degree or a higher", |
64 |
print "internal precision." |
65 |
print "Aborting!" |
66 |
return (None, None, None, None) |
67 |
currentRangeSo = pobyso_bounds_to_range_sa_so(currentLowerBoundSa, |
68 |
currentUpperBoundSa) |
69 |
# print "New interval:", |
70 |
# pobyso_autoprint(currentRangeSo) |
71 |
(polySo, intervalCenterSo, maxErrorSo) = \ |
72 |
pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
73 |
currentRangeSo, |
74 |
absoluteErrorTypeSo) |
75 |
#maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo, RRR) |
76 |
#print "Max errorSo:", |
77 |
#pobyso_autoprint(maxErrorSo) |
78 |
maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
79 |
#print "Max errorSa:", maxErrorSa |
80 |
#print "Sollya prec:", |
81 |
#pobyso_autoprint(sollya_lib_get_prec(None)) |
82 |
sollya_lib_clear_obj(absoluteErrorTypeSo) |
83 |
return((polySo, currentRangeSo, intervalCenterSo, maxErrorSo)) |
84 |
# End slz_compute_polynomial_and_interval |
85 |
|
86 |
def slz_compute_reduced_polynomials(reducedMatrix, |
87 |
knownMonomials, |
88 |
var1Bound, |
89 |
var2Bound): |
90 |
""" |
91 |
From a reduced matrix, holding the coefficients, from a monomials list, |
92 |
from the bounds of each variable, compute the corresponding polynomials |
93 |
scaled back by dividing by the "right" powers of the variables bounds. |
94 |
|
95 |
The elements in knownMonomials must be of the "right" polynomial type. |
96 |
""" |
97 |
|
98 |
# TODO: check input arguments. |
99 |
if len(knownMonomials) == 0: |
100 |
return [] |
101 |
# Search in knowMonomials until we find a bivariate one, otherwise |
102 |
# the call to variables does not give the expected result. |
103 |
monomialIndex = 1 |
104 |
while len(knownMonomials[monomialIndex].variables()) != 2 : |
105 |
monomialIndex +=1 |
106 |
(var1, var2) = knownMonomials[monomialIndex].variables()[0:2] |
107 |
#print "Variable 1:", var1 |
108 |
#print "Variable 2:", var2 |
109 |
reducedPolynomials = [] |
110 |
currentPolynomial = 0 |
111 |
for matrixRow in reducedMatrix.rows(): |
112 |
for colIndex in xrange(0, len(knownMonomials)): |
113 |
currentCoefficient = matrixRow[colIndex] |
114 |
#print knownMonomials[colIndex] |
115 |
currentMonomial = knownMonomials[colIndex] |
116 |
#print "Monomial as multivariate polynomial:", \ |
117 |
currentMonomial, type(currentMonomial) |
118 |
degreeInVar1 = currentMonomial.degree(var1) |
119 |
#print "Degree in var", var1, ":", degreeInVar1 |
120 |
degreeInVar2 = currentMonomial.degree(var2) |
121 |
#print "Degree in var", var2, ":", degreeInVar2 |
122 |
if degreeInVar1 != 0: |
123 |
currentCoefficient /= (var1Bound^degreeInVar1) |
124 |
if degreeInVar2 != 0: |
125 |
currentCoefficient /= (var2Bound^degreeInVar2) |
126 |
#print "Current reduced monomial:", (currentCoefficient * \ |
127 |
# currentMonomial) |
128 |
currentPolynomial += (currentCoefficient * currentMonomial) |
129 |
#print "Type of the current polynomial:", type(currentPolynomial) |
130 |
reducedPolynomials.append(currentPolynomial) |
131 |
return reducedPolynomials |
132 |
# End slz_compute_reduced_polynomials. |
133 |
|
134 |
def slz_compute_scaled_function(functionSa, \ |
135 |
lowerBoundSa, \ |
136 |
upperBoundSa, \ |
137 |
floatingPointPrecSa): |
138 |
""" |
139 |
From a function, compute the scaled function whose domain |
140 |
is included in [1, 2) and whose image is also included in [1,2). |
141 |
Return a tuple: |
142 |
[0]: the scaled function |
143 |
[1]: the scaled domain lower bound |
144 |
[2]: the scaled domain upper bound |
145 |
[3]: the scaled image lower bound |
146 |
[4]: the scaled image upper bound |
147 |
""" |
148 |
x = functionSa.variables()[0] |
149 |
# Reassert f as a function (an not a mere expression). |
150 |
|
151 |
# Scalling the domain -> [1,2[. |
152 |
boundsIntervalRifSa = RealIntervalField(floatingPointPrecSa) |
153 |
domainBoundsIntervalSa = boundsIntervalRifSa(lowerBoundSa, upperBoundSa) |
154 |
(domainScalingExpressionSa, invDomainScalingExpressionSa) = \ |
155 |
slz_interval_scaling_expression(domainBoundsIntervalSa, x) |
156 |
print "domainScalingExpression for argument :", domainScalingExpressionSa |
157 |
print "f: ", f |
158 |
ff = f.subs({x : domainScalingExpressionSa}) |
159 |
#ff = f.subs_expr(x==domainScalingExpressionSa) |
160 |
domainScalingFunction(x) = invDomainScalingExpressionSa |
161 |
scaledLowerBoundSa = domainScalingFunction(lowerBoundSa).n() |
162 |
scaledUpperBoundSa = domainScalingFunction(upperBoundSa).n() |
163 |
print 'ff:', ff, "- Domain:", scaledLowerBoundSa, scaledUpperBoundSa |
164 |
# |
165 |
# Scalling the image -> [1,2[. |
166 |
flbSa = f(lowerBoundSa).n() |
167 |
fubSa = f(upperBoundSa).n() |
168 |
if flbSa <= fubSa: # Increasing |
169 |
imageBinadeBottomSa = floor(flbSa.log2()) |
170 |
else: # Decreasing |
171 |
imageBinadeBottomSa = floor(fubSa.log2()) |
172 |
print 'ff:', ff, '- Image:', flbSa, fubSa, imageBinadeBottomSa |
173 |
imageBoundsIntervalSa = boundsIntervalRifSa(flbSa, fubSa) |
174 |
(imageScalingExpressionSa, invImageScalingExpressionSa) = \ |
175 |
slz_interval_scaling_expression(imageBoundsIntervalSa, x) |
176 |
iis = invImageScalingExpressionSa.function(x) |
177 |
fff = iis.subs({x:ff}) |
178 |
print "fff:", fff, |
179 |
print " - Image:", fff(scaledLowerBoundSa), fff(scaledUpperBoundSa) |
180 |
return([fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
181 |
fff(scaledLowerBoundSa), fff(scaledUpperBoundSa)]) |
182 |
|
183 |
def slz_float_poly_of_float_to_rat_poly_of_rat(polyOfFloat): |
184 |
# Create a polynomial over the rationals. |
185 |
polynomialRing = QQ[str(polyOfFloat.variables()[0])] |
186 |
return(polynomialRing(polyOfFloat)) |
187 |
# End slz_float_poly_of_float_to_rat_poly_of_rat. |
188 |
|
189 |
def slz_get_intervals_and_polynomials(functionSa, degreeSa, |
190 |
lowerBoundSa, |
191 |
upperBoundSa, floatingPointPrecSa, |
192 |
internalSollyaPrecSa, approxPrecSa): |
193 |
""" |
194 |
Under the assumption that: |
195 |
- functionSa is monotonic on the [lowerBoundSa, upperBoundSa] interval; |
196 |
- lowerBound and upperBound belong to the same binade. |
197 |
from a: |
198 |
- function; |
199 |
- a degree |
200 |
- a pair of bounds; |
201 |
- the floating-point precision we work on; |
202 |
- the internal Sollya precision; |
203 |
- the requested approximation error |
204 |
The initial interval is, possibly, splitted into smaller intervals. |
205 |
It return a list of tuples, each made of: |
206 |
- a first polynomial (without the changed variable f(x) = p(x-x0)); |
207 |
- a second polynomial (with a changed variable f(x) = q(x)) |
208 |
- the approximation interval; |
209 |
- the center, x0, of the interval; |
210 |
- the corresponding approximation error. |
211 |
""" |
212 |
currentSollyaPrecSo = pobyso_get_prec_so() |
213 |
currentSollyaPrecSa = pobyso_constant_from_int_so_sa(currentSollyaPrecSo) |
214 |
if internalSollyaPrecSa > currentSollyaPrecSa: |
215 |
pobyso_set_prec_sa_so(internalSollyaPrecSa) |
216 |
x = functionSa.variables()[0] # Actual variable name can be anything. |
217 |
(fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
218 |
scaledLowerBoundImageSa, scaledUpperBoundImageSa) = \ |
219 |
slz_compute_scaled_function(functionSa, \ |
220 |
lowerBoundSa, \ |
221 |
upperBoundSa, \ |
222 |
floatingPointPrecSa) |
223 |
# |
224 |
resultArray = [] |
225 |
# |
226 |
print "Approximation precision: ", RR(approxPrecSa) |
227 |
# Prepare the arguments for the Taylor expansion computation with Sollya. |
228 |
functionSo = pobyso_parse_string_sa_so(fff._assume_str()) |
229 |
degreeSo = pobyso_constant_from_int_sa_so(degreeSa) |
230 |
scaledBoundsSo = pobyso_bounds_to_range_sa_so(scaledLowerBoundSa, |
231 |
scaledUpperBoundSa) |
232 |
# Compute the first Taylor expansion. |
233 |
(polySo, boundsSo, intervalCenterSo, maxErrorSo) = \ |
234 |
slz_compute_polynomial_and_interval(functionSo, degreeSo, |
235 |
scaledLowerBoundSa, scaledUpperBoundSa, |
236 |
approxPrecSa, internalSollyaPrecSa) |
237 |
if polySo is None: |
238 |
print "Aborting" |
239 |
return None |
240 |
# Change variable stuff |
241 |
changeVarExpressionSo = sollya_lib_build_function_sub( |
242 |
sollya_lib_build_function_free_variable(), |
243 |
sollya_lib_copy_obj(intervalCenterSo)) |
244 |
polyVarChangedSo = sollya_lib_evaluate(polySo, changeVarExpressionSo) |
245 |
resultArray.append((polySo, polyVarChangedSo, boundsSo, intervalCenterSo,\ |
246 |
maxErrorSo)) |
247 |
realIntervalField = RealIntervalField(max(lowerBoundSa.parent().precision(), |
248 |
upperBoundSa.parent().precision())) |
249 |
boundsSa = pobyso_range_to_interval_so_sa(boundsSo, realIntervalField) |
250 |
# Compute the next upper bound. |
251 |
# If the error of approximation is more than half of the target, |
252 |
# use the same interval. |
253 |
# If it is less, increase it a bit. |
254 |
errorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
255 |
currentErrorRatio = approxPrecSa / errorSa |
256 |
currentScaledUpperBoundSa = boundsSa.endpoints()[1] |
257 |
if currentErrorRatio < 2 : |
258 |
currentScaledUpperBoundSa += \ |
259 |
(boundsSa.endpoints()[1] - boundsSa.endpoints()[0]) |
260 |
else: |
261 |
currentScaledUpperBoundSa += \ |
262 |
(boundsSa.endpoints()[1] - boundsSa.endpoints()[0]) \ |
263 |
* currentErrorRatio.log2() * 2 |
264 |
if currentScaledUpperBoundSa > scaledUpperBoundSa: |
265 |
currentScaledUpperBoundSa = scaledUpperBoundSa |
266 |
# Compute the other expansions. |
267 |
while boundsSa.endpoints()[1] < scaledUpperBoundSa: |
268 |
currentScaledLowerBoundSa = boundsSa.endpoints()[1] |
269 |
(polySo, boundsSo, intervalCenterSo, maxErrorSo) = \ |
270 |
slz_compute_polynomial_and_interval(functionSo, degreeSo, |
271 |
currentScaledLowerBoundSa, |
272 |
currentScaledUpperBoundSa, |
273 |
approxPrecSa, |
274 |
internalSollyaPrecSa) |
275 |
# Change variable stuff |
276 |
changeVarExpressionSo = sollya_lib_build_function_sub( |
277 |
sollya_lib_build_function_free_variable(), |
278 |
sollya_lib_copy_obj(intervalCenterSo)) |
279 |
polyVarChangedSo = sollya_lib_evaluate(polySo, changeVarExpressionSo) |
280 |
resultArray.append((polySo, polyVarChangedSo, boundsSo, \ |
281 |
intervalCenterSo, maxErrorSo)) |
282 |
boundsSa = pobyso_range_to_interval_so_sa(boundsSo, realIntervalField) |
283 |
# Compute the next upper bound. |
284 |
# If the error of approximation is more than half of the target, |
285 |
# use the same interval. |
286 |
# If it is less, increase it a bit. |
287 |
errorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
288 |
currentErrorRatio = approxPrecSa / errorSa |
289 |
if currentErrorRatio < RR('1.5') : |
290 |
currentScaledUpperBoundSa = \ |
291 |
boundsSa.endpoints()[1] + \ |
292 |
(boundsSa.endpoints()[1] - boundsSa.endpoints()[0]) |
293 |
elif currentErrorRatio < 2: |
294 |
currentScaledUpperBoundSa = \ |
295 |
boundsSa.endpoints()[1] + \ |
296 |
(boundsSa.endpoints()[1] - boundsSa.endpoints()[0]) \ |
297 |
* currentErrorRatio.log2() |
298 |
else: |
299 |
currentScaledUpperBoundSa = \ |
300 |
boundsSa.endpoints()[1] + \ |
301 |
(boundsSa.endpoints()[1] - boundsSa.endpoints()[0]) \ |
302 |
* currentErrorRatio.log2() * 2 |
303 |
# Test for insufficient precision. |
304 |
if currentScaledUpperBoundSa == scaledLowerBoundSa: |
305 |
print "Can't shrink the interval anymore!" |
306 |
print "You should consider increasing the Sollya internal precision" |
307 |
print "or the polynomial degree." |
308 |
print "Giving up!" |
309 |
sollya_lib_clear_obj(functionSo) |
310 |
sollya_lib_clear_obj(degreeSo) |
311 |
sollya_lib_clear_obj(scaledBoundsSo) |
312 |
return None |
313 |
if currentScaledUpperBoundSa > scaledUpperBoundSa: |
314 |
currentScaledUpperBoundSa = scaledUpperBoundSa |
315 |
sollya_lib_clear_obj(functionSo) |
316 |
sollya_lib_clear_obj(degreeSo) |
317 |
sollya_lib_clear_obj(scaledBoundsSo) |
318 |
if internalSollyaPrecSa > currentSollyaPrecSa: |
319 |
pobyso_set_prec_so_so(currentSollyaPrecSo) |
320 |
return(resultArray) |
321 |
# End slz_get_intervals_and_polynomials |
322 |
|
323 |
|
324 |
def slz_interval_scaling_expression(boundsInterval, expVar): |
325 |
""" |
326 |
Compute the scaling expression to map an interval that span only |
327 |
a binade to [1, 2) and the inverse expression as well. |
328 |
Not very sure that the transformation makes sense for negative numbers. |
329 |
""" |
330 |
# The scaling offset is only used for negative numbers. |
331 |
if abs(boundsInterval.endpoints()[0]) < 1: |
332 |
if boundsInterval.endpoints()[0] >= 0: |
333 |
scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
334 |
invScalingCoeff = 1/scalingCoeff |
335 |
return((scalingCoeff * expVar, |
336 |
invScalingCoeff * expVar)) |
337 |
else: |
338 |
scalingCoeff = \ |
339 |
2^(floor((-boundsInterval.endpoints()[0]).log2()) - 1) |
340 |
scalingOffset = -3 * scalingCoeff |
341 |
return((scalingCoeff * expVar + scalingOffset, |
342 |
1/scalingCoeff * expVar + 3)) |
343 |
else: |
344 |
if boundsInterval.endpoints()[0] >= 0: |
345 |
scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
346 |
scalingOffset = 0 |
347 |
return((scalingCoeff * expVar, |
348 |
1/scalingCoeff * expVar)) |
349 |
else: |
350 |
scalingCoeff = \ |
351 |
2^(floor((-boundsInterval.endpoints()[1]).log2())) |
352 |
scalingOffset = -3 * scalingCoeff |
353 |
#scalingOffset = 0 |
354 |
return((scalingCoeff * expVar + scalingOffset, |
355 |
1/scalingCoeff * expVar + 3)) |
356 |
|
357 |
|
358 |
def slz_interval_and_polynomial_to_sage(polyRangeCenterErrorSo): |
359 |
""" |
360 |
Compute the Sage version of the Taylor polynomial and it's |
361 |
companion data (interval, center...) |
362 |
The input parameter is a five elements tuple: |
363 |
- [0]: the polyomial (without variable change), as polynomial over a |
364 |
real ring; |
365 |
- [1]: the polyomial (with variable change done in Sollya), as polynomial |
366 |
over a real ring; |
367 |
- [2]: the interval (as Sollya range); |
368 |
- [3]: the interval center; |
369 |
- [4]: the approximation error. |
370 |
|
371 |
The function return a 5 elements tuple: formed with all the |
372 |
input elements converted into their Sollya counterpart. |
373 |
""" |
374 |
polynomialSa = pobyso_get_poly_so_sa(polyRangeCenterErrorSo[0]) |
375 |
polynomialChangedVarSa = pobyso_get_poly_so_sa(polyRangeCenterErrorSo[1]) |
376 |
intervalSa = \ |
377 |
pobyso_get_interval_from_range_so_sa(polyRangeCenterErrorSo[2]) |
378 |
centerSa = \ |
379 |
pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[3]) |
380 |
errorSa = \ |
381 |
pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[4]) |
382 |
return((polynomialSa, polynomialChangedVarSa, intervalSa, centerSa, errorSa)) |
383 |
# End slz_interval_and_polynomial_to_sage |
384 |
|
385 |
def slz_rat_poly_of_int_to_poly_for_coppersmith(ratPolyOfInt, |
386 |
precision, |
387 |
targetHardnessToRound, |
388 |
variable1, |
389 |
variable2): |
390 |
""" |
391 |
Creates a new multivariate polynomial with integer coefficients for use |
392 |
with the Coppersmith method. |
393 |
A the same time it computes : |
394 |
- 2^K (N); |
395 |
- 2^k (bound on the second variable) |
396 |
- lcm |
397 |
|
398 |
:param ratPolyOfInt: a polynomial with rational coefficients and integer |
399 |
variables. |
400 |
:param precision: the precision of the floating-point coefficients. |
401 |
:param targetHardnessToRound: the hardness to round we want to check. |
402 |
:param variable1: the first variable of the polynomial (an expression). |
403 |
:param variable2: the second variable of the polynomial (an expression). |
404 |
|
405 |
:returns: a 4 elements tuple: |
406 |
- the polynomial; |
407 |
- the modulus (N); |
408 |
- the t bound; |
409 |
- the lcm used to compute the integral coefficients and the |
410 |
module. |
411 |
""" |
412 |
# Create a new integer polynomial ring. |
413 |
IP = PolynomialRing(ZZ, name=str(variable1) + "," + str(variable2)) |
414 |
# Coefficients are issued in the increasing power order. |
415 |
ratPolyCoefficients = ratPolyOfInt.coefficients() |
416 |
# Print the reversed list for debugging. |
417 |
print "Rational polynomial coefficients:", ratPolyCoefficients[::-1] |
418 |
# Build the list of number we compute the lcm of. |
419 |
coefficientDenominators = sro_denominators(ratPolyCoefficients) |
420 |
coefficientDenominators.append(2^precision) |
421 |
coefficientDenominators.append(2^(targetHardnessToRound + 1)) |
422 |
leastCommonMultiple = lcm(coefficientDenominators) |
423 |
# Compute the expression corresponding to the new polynomial |
424 |
coefficientNumerators = sro_numerators(ratPolyCoefficients) |
425 |
#print coefficientNumerators |
426 |
polynomialExpression = 0 |
427 |
power = 0 |
428 |
# Iterate over two lists at the same time, stop when the shorter is |
429 |
# exhausted. |
430 |
for numerator, denominator in \ |
431 |
zip(coefficientNumerators, coefficientDenominators): |
432 |
multiplicator = leastCommonMultiple / denominator |
433 |
newCoefficient = numerator * multiplicator |
434 |
polynomialExpression += newCoefficient * variable1^power |
435 |
power +=1 |
436 |
polynomialExpression += - variable2 |
437 |
return (IP(polynomialExpression), |
438 |
leastCommonMultiple / 2^precision, # 2^K or N. |
439 |
leastCommonMultiple / 2^(targetHardnessToRound + 1), # tBound |
440 |
leastCommonMultiple) # If we want to make test computations. |
441 |
|
442 |
# End slz_ratPoly_of_int_to_poly_for_coppersmith |
443 |
|
444 |
def slz_rat_poly_of_rat_to_rat_poly_of_int(ratPolyOfRat, |
445 |
precision): |
446 |
""" |
447 |
Makes a variable substitution into the input polynomial so that the output |
448 |
polynomial can take integer arguments. |
449 |
All variables of the input polynomial "have precision p". That is to say |
450 |
that they are rationals with denominator == 2^precision: x = y/2^precision |
451 |
We "incorporate" these denominators into the coefficients with, |
452 |
respectively, the "right" power. |
453 |
""" |
454 |
polynomialField = ratPolyOfRat.parent() |
455 |
polynomialVariable = ratPolyOfRat.variables()[0] |
456 |
#print "The polynomial field is:", polynomialField |
457 |
return \ |
458 |
polynomialField(ratPolyOfRat.subs({polynomialVariable : \ |
459 |
polynomialVariable/2^(precision-1)})) |
460 |
|
461 |
# Return a tuple: |
462 |
# - the bivariate integer polynomial in (i,j); |
463 |
# - 2^K |
464 |
# End slz_rat_poly_of_rat_to_rat_poly_of_int |
465 |
|
466 |
print "\t...sageSLZ loaded" |