root / pobysoPythonSage / src / sageSLZ / sageMatrixOperations.sage @ 95
Historique | Voir | Annoter | Télécharger (3,28 ko)
1 |
print "sageMatrixOperations loading..." |
---|---|
2 |
def smo_is_diagonal_complete_matrix(mat): |
3 |
""" |
4 |
Check that all the element on the diagonal are not 0. |
5 |
""" |
6 |
dimensions = mat.dimensions() |
7 |
# Must be a bidimensional matrix. |
8 |
if len(dimensions) != 2: |
9 |
return False |
10 |
# Must be square. |
11 |
if dimensions[0] != dimensions[1]: |
12 |
return False |
13 |
# A 1x1 matrix is diagonal complete if it's single element is not 0. |
14 |
if dimensions[0] == 1: |
15 |
if mat[0, 0] != 0: |
16 |
return True |
17 |
else: |
18 |
return False |
19 |
# End if |
20 |
for rowIndex in xrange(0, dimensions[0]): |
21 |
if mat[rowIndex, rowIndex] == 0: |
22 |
print mat.rows()[rowIndex], rowIndex |
23 |
return False |
24 |
return True |
25 |
# End smo_is_diagonal_complete_matrix |
26 |
|
27 |
def smo_is_lower_triangular_matrix(mat): |
28 |
""" |
29 |
Check that the matrix is lower triangular. |
30 |
""" |
31 |
dimensions = mat.dimensions() |
32 |
# Must be a bidimensional matrix. |
33 |
if len(dimensions) != 2: |
34 |
return False |
35 |
# Must be square. |
36 |
if dimensions[0] != dimensions[1]: |
37 |
return False |
38 |
# A 1x1 matrix is lower triangular. |
39 |
if dimensions[0] == 1: |
40 |
return True |
41 |
for rowIndex in xrange(0, dimensions[0]): |
42 |
for colIndex in xrange(rowIndex + 1, dimensions[1]): |
43 |
if mat[rowIndex, colIndex] != 0: |
44 |
print mat.rows()[rowIndex] |
45 |
return False |
46 |
return True |
47 |
# End smo_is_lower_triangular_matrix |
48 |
|
49 |
def smo_is_upper_triangular_matrix(mat): |
50 |
""" |
51 |
Check that the matrix is upper triangular. |
52 |
""" |
53 |
dimensions = mat.dimensions() |
54 |
# Must be a bidimensional matrix. |
55 |
if len(dimensions) != 2: |
56 |
return False |
57 |
# Must be square. |
58 |
if dimensions[0] != dimensions[1]: |
59 |
return False |
60 |
# A 1x1 matrix is lower triangular. |
61 |
if dimensions[0] == 1: |
62 |
return True |
63 |
for rowIndex in xrange(1, dimensions[0]): |
64 |
for colIndex in xrange(0, rowIndex): |
65 |
if mat[rowIndex, colIndex] != 0: |
66 |
print mat.rows()[rowIndex] |
67 |
return False |
68 |
return True |
69 |
# End smo_is_upper_triangular_matrix |
70 |
|
71 |
def smo_max_non_null_abs(mat): |
72 |
""" |
73 |
Compute the maximum absolute value of the matrix elements. |
74 |
""" |
75 |
maxNonNull = -Infinity |
76 |
mlist = mat._list() |
77 |
for i in mlist: |
78 |
if i != 0 and i.abs() > maxNonNull : |
79 |
maxNonNull = i.abs() |
80 |
return maxNonNull |
81 |
# End smo_min_non_null_abs |
82 |
|
83 |
# |
84 |
|
85 |
def smo_min_non_null_abs(mat): |
86 |
""" |
87 |
Compute the minimum absolute value of the matrix elements. |
88 |
""" |
89 |
minNonNull = Infinity |
90 |
mlist = mat._list() |
91 |
for i in mlist: |
92 |
if i != 0 and i.abs() < minNonNull : |
93 |
minNonNull = i.abs() |
94 |
return minNonNull |
95 |
# End smo_min_non_null_abs |
96 |
|
97 |
def smo_transformation_row_matrix_strings(varPrefixString,matrix): |
98 |
m = matrix.nrows() |
99 |
if m == 0 : |
100 |
return None |
101 |
varDeclarationString = "var('" |
102 |
varListArrayDeclaration ="[" |
103 |
varListString = "" |
104 |
for k in xrange(1,m+1): |
105 |
if k != m: |
106 |
varListString += varPrefixString + str(k) + "," |
107 |
else: |
108 |
varListString += varPrefixString + str(k) |
109 |
varDeclarationString += varListString + "')" |
110 |
varListArrayDeclaration += "]" |
111 |
return(varDeclarationString, varListArrayDeclaration) |
112 |
# End smo_transformation_row_matrix_strings. |
113 |
|
114 |
print "\t...sageMatrixOperations loaded" |